
GEO1015/2018 Lesson 08

Conversion between terrain representations

Lesson 08*

1 Conversion of PC/TIN to raster 2

2 Conversion to isolines 2
2.1 Conversion of raster to isolines . 3
2.2 Conversion TIN to isolines . 5
2.3 Structuring the output . 5
2.4 Smoothness of the contours . 6

3 Simplification of a TIN 6
3.1 The importance of a point . 7
3.2 TIN simplification algorithms . 7

3.2.1 TIN simplification by refinement . 8
3.2.2 TIN simplification by decimation . 8

3.3 Comparison: decimation versus refinement . 9

4 Conversion isolines to TIN/raster creates the ‘wedding cake effect’ 9

5 Notes & comments 10

We consider in this lesson the following four terrain representations and discuss the conver-
sions between them:

raster TIN isolinespoint cloud (PC)

*cba Hugo Ledoux, Ravi Peters, Ken Arroyo Ohori. This work is licensed under a Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)
(last update: November 30, 2018)

http://creativecommons.org/licenses/by/4.0/

GEO1015/2018 Lesson 08

from/to PC raster TIN isolines

PC — interpolate at
middle points of
cells (§1)

create DT using
2D projection of
points (ie using x
and y only)

convert to TIN
+ extract from
triangles (§2.2) +
structure output
(§2.3)

raster keep middle
points only

— create TIN using
middle points of
cells + TIN sim-
plification (§3)

extract from grid
cells (§2.1) +
structure output
(§2.3)

TIN keep only ver-
tices

interpolate at
middle points of
cells (§1)

— extract from tri-
angles (§2.2) +
structure output
(§2.3)

isolines keep only ver-
tices — warning:
‘wedding cake’
effect (§4)

convert lines to
points + interpo-
late (§1) — warn-
ing: ‘wedding cake’
effect (§4)

create DT using
points — warn-
ing: ‘wedding cake’
effect (§4)

—

1 Conversion of PC/TIN to raster

As shown in Figure 1, this step is trivial: one needs to interpolate at the locations of the cen-
tre points of the raster cells. The interpolation method can be any of the ones described in
Lessons 04 and 05.

2 Conversion to isolines

Reading a contour map requires some skill, however it is considerably easier to learn to inter-
pret a contour map than to manually draw one from a limited set of sample points. Yet this
was exactly the task of many cartographers in the past couple of centuries: it was intuitively
done by imagining a local triangulation of sample points.

Isolines are usually directly extracted from either a TIN or a grid representation of a terrain.
The basic idea, as shown in Figure 2, is to compute the intersection between a level value (eg
200m) and each cell of the terrain (triangle or grid cell in our case). Notice that the cells are

(a) (b) (c) (d) (e)

Figure 1: (a) input sample points. (b) size/location of output raster. (c) 9 interpolations must
be performed (at locations marked with ◦): at the middle of each cell. (d) the convex hull
of the sample points show that 2 estimations are outside, thus no interpolation. (e) the
resulting raster.

2 of 11

GEO1015/2018 Lesson 08

200m

the 200m isoline has 2 components

Figure 2: Vertical cross-section of a terrain (left), and a 2D projection of the terrain TIN with
the extracted 200m isoline (right).

Algorithm 1: Simple extraction of one isoline
Input: a planar partition E formed of cells (either rectangular or triangular cells); the

elevation value z0
Output: a list of unstructured line segments representing the contour lines at z0

1 segmentList← [] ;
2 for e ∈ E do
3 if z0 intersects e then

/* See Figures 3 and ?? */

4 extract intersection χ of z0 with e;
5 add χ to segmentList;

‘lifted’ to their elevation. Each cell of the terrain is thus visited, one after the other, and for each
cell if there is an intersection (which forms a line segment) then it is extracted. The resulting
set of segment lines forms an approximation of the isoline. This process is then repeated for
every level value. Notice that an isoline can have several components, for instance when the
terrain has more than one peak.

Therefore the number and size of the line segments in the resulting isoline are dependent
on the resolution of the data representation.

The basic algorithm for extracting one isoline is shown in Algorithm 1. Note that since the
algorithm contours every grid cell or triangle individually and requires only local information,
it is very easy to parallelise. It is thus a scalable algorithm. The same idea can be used to
extract all the isolines: for each triangle/cell and each level value, extract all the necessary line
segments.

2.1 Conversion of raster to isolines

Intersections are computed by linearly interpolating the elevations of the vertex pairs along
the edges of this grid. Figure 3 illustrates the different possible configurations. The top-left
case indicates the case for which there are no intersections: all vertices are either higher or
lower than z0.

Observe that two vertices are exactly at z0, then the extraction of these is in theory not
necessary because the neighbouring cell could also extract them. However, we do not want
to obtain an output with duplicate line segments, and thus a simple solution to this is to only
extract such line segments if they are for instance the lower and/or left segments of a given
cell.

The most interesting case is the bottom-left one in Figure 3, it occurs when the two pairs

3 of 11

GEO1015/2018 Lesson 08

Figure 3: Different cases when extracting an isoline at elevation 10m for a regular grid. The
grey values are the elevation of the vertices forming one regular cell, and the blue lines and
vertices are the ones extracted for that cell.

Figure 4: Different cases when extracting an isoline at elevation 10m for a TIN. The grey values
are the elevation of the vertices forming one triangle, and the blue lines and vertices are the
ones extracted for that triangle.

4 of 11

GEO1015/2018 Lesson 08

of opposing points are respectively higher and lower than z0. This forms a saddle point. The
ambiguity arises here since there are two ways to extract a valid pair of contour line segments
(only one of the 2 options must be extracted). This can be resolved by simply picking a random
option or consistently choose one geometric orientation.

2.2 Conversion TIN to isolines

Since a triangle has one fewer vertex/edge than a square grid cell, there are less possible inter-
section cases (Figure 4) and, more importantly, there is no ambiguous case. The worst case to
handle is when there are horizontal triangles at exactly the height of the isoline. Otherwise, the
intersection cases are quite similar to the raster situation and they can be easily implemented.

To avoid extracting twice the same line segment when 2 vertices are at z0 (case on the right
in Figure 4), then we can simply look at the normal of the edge segment: if its y-component is
positive then it can be added, if y = 0 then only add if the x-component is positive.

Observe that since the algorithm is simpler than that for a raster dataset, one way to extract
isolines from a raster dataset is by first triangulating it: each square cell is subdivided into 2
triangles (simply ensure that the diagonal is consistent, eg from lower-left to top-right).

2.3 Structuring the output

The line segments obtained from the simple algorithms above are not structured, ie they are
in an arbitrary order (the order in which we visited the triangles/cells) and are not connected.
Furthermore, the set of line segments can form more than one component, a set of segments
forming a closed polygon (unless they are at the border of the dataset). Perhaps the only
application where having unstructured line segments is fine is for visualisation of the lines.
For most other applications this can be problematic, for instance:

1. if one wants to know how many peaks above 1000m there are in a given area;

2. if smoothing of the isolines is necessary, with the Douglas-Peucker algorithm for in-
stance;

3. if a GIS format requires that the isolines be closed polylines oriented such that the higher
terrain is on the left for instance, such as for colouring the area enclosed by an isoline.

To obtain structured segments, the simplest solution is to merge, as post-processing, the
line segments based on their start and end vertices. Observe that the line segments will not
be consistently oriented to form one polygon (see Figure 5a), that is the orientation of the
segments might need to be swapped. This can be done by simply starting with a segment ab,
and searching for the other segment having b as either start or end vertex, and continue until
a component is formed (a polygon is formed), or until no segment can be found (the border of
the dataset is reached, as shown in Figure 5a).

As shown in Figure 5b, another solution is to find one cell τ0 intersecting the isoline at a given
elevation, ‘tracing’ the isoline by navigating from τ0 to the adjacent cell, and continuing until
τ0 is visited again (or the border of the dataset is reached). To navigate to the adjacent cell, it
suffices to identify the edge ε intersecting the isoline, and then navigating to the triangle/cell
that is incident to ε. It is possible that there is no adjacent cell, if the boundary of the convex
hull is reached in a TIN for instance. This requires that the TIN be stored in a topological data
structure in which the adjacency between the triangles is available (for a grid this is implied).

The main issue is finding the starting cells (let us call them seed triangles). Obviously, it
suffices to have one seed for each of the component of the isolines (there would be 2 seeds in
Figure 5b). An easy algorithm to extract all the components of an isoline requires visiting all

5 of 11

GEO1015/2018 Lesson 08

seed triangle

(a) (b)

Figure 5: (a) The isoline segments extracted with Algorithm 1 do not have a consistent orien-
tation. (b) Algorithm 1 can be sped up by starting at a seed triangle and ‘tracing’ the isoline;
the order is shown by the blue arrows.

the cells in a terrain, and keeping track of which triangles have been visited (simply store an
Boolean attribute for each triangle, which is called a mark bit). Simply visit triangle sequen-
tially and mark them as ‘visited’, when one triangle has an intersection then start the tracing
operation, marking triangles as visited as you trace.

2.4 Smoothness of the contours

The mathematical concept of the Implicit Function Theorem states that a contour line extracted
from a field f will be no less smooth than f itself. In other words, obtaining smooth contour
lines can be achieved by smoothing the field itself. Robin Sibson1 goes further in stating that:

‘The eye is very good at detecting gaps and corners, but very bad at detecting disconti-
nuities in derivatives higher than the first. For contour lines to be accepted by the eye as
a description of a function however smooth, they need to have continuously turning tan-
gents, but higher order continuity of the supposed contours is not needed for them to be
visually convincing.’

In brief, in practice we should use interpolant functions whose first derivative is continuous
(ie C1) if we want to obtain smooth contours. C0 interpolants are not enough, and C2 ones are
not necessary.

3 Simplification of a TIN

The TIN simplification problem is:

Given a TIN formed by the Delaunay triangulation of a set S of points, the aim is to
find a subset R of S which will approximate the surface of the TIN as accurately as
possible, using as few points as possible. The subset R will contain the ‘important’

1http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.63

6 of 11

GEO1015/2018 Lesson 08

p1

p2

error(p1) > εmax

error(p2) < εmax

Figure 6: The importance measure of a point can be expressed by its vertical error. When this
error is greater than a given threshold εmax, the point is kept (p1), else it is discarded (p2).

points of S, ie a point p is important when the elevation at location p can not be
accurately estimated by using the neighbours of p.

The overarching goal of TIN simplification is always to (smartly) reduce the number of
points in the TIN. This reduces memory and storage requirements, and speeds up TIN analy-
sis algorithms.

Observe that the simplification of a TIN can be used to simplify a raster terrain: we can first
obtain the triangulation of the middle points of each cell, and then simplify this TIN to obtain
a simplified terrain.

3.1 The importance of a point

The importance of a point is a measure that indicates the error in the TIN when that point
would not be part of it. Imagine for instance a large flat area in a terrain. This area can be
accurately approximated with only a few large triangles, and inserting points in the middle of
such an area does not make the TIN more accurate. An area with a lot of relief on the other
hand can only be accurately modelled with many small triangles. We can therefore say that
the points in the middle of the flat area are less important than the points in the area with
relief.

The importance of a point—or importance measure—can be expressed in several ways, eg
based on an elevation difference or the curvature of the point. Here we focus on the vertical
error which has proven to be effective in practice.

The vertical error of a point p is the elevation difference between p itself and the interpolated
elevation in the TIN T at the (x, y) coordinates of p (see Figure 6). Notice that T does not
contain p as a vertex.

3.2 TIN simplification algorithms

There are two main approaches to TIN simplification: decimation and refinement. In a deci-
mation algorithm, we start with a TIN that contains all the input points, and gradually remove
points that are not important. In a refinement algorithm, we do the opposite: we start with a
very simple TIN, and we gradually refine it by adding the important points.

7 of 11

GEO1015/2018 Lesson 08

Algorithm 2: TIN simplification by refinement
Input: A set of input points S, and the simplification threshold εmax
Output: A triangulation T that consists of a subset of S and that satisfies εmax

1 Construct an initial triangulation T that covers the 2D bounding box of S ;
2 ε← ∞ ;
3 while ε > εmax do
4 ε← 0 ;
5 q← nil ;
6 for all p ∈ S do
7 τ ← the triangle in T that contains p ;
8 ετ ← the vertical error of p with respect to τ ;
9 if ετ > ε then

10 ε← ετ ;
11 q← p ;

/* insert the point q that has the largest error: */

12 insert into T the point q ;
13 remove q from S ;

3.2.1 TIN simplification by refinement

Here we describe an iterative refinement algorithm based on greedy insertion2. It begins with
a simple triangulation of the spatial extent and, at each iteration, finds the input point with
highest importance—the highest vertical error—in the current TIN and inserts it as a new
vertex in the triangulation. The algorithm stops when the highest error of the remaining input
points with respect to the current TIN is below a user-defined threshold εmax. Algorithm 2
shows the pseudo-code. It is also possible to insert only a certain percentage of the number of
input points, eg we might want to keep only 10% of them.

3.2.2 TIN simplification by decimation

The implementation of the decimation algorithm is similar to the refinement algorithm. The
main differences are

1. we start with a full triangulation of all the input points, instead of an empty triangula-
tion;

2. instead of iteratively adding the point with the highest importance, we iteratively re-
move the point with the lowest importance, and

3. in order to compute the importance of a point we actually need to remove it temporarily
from the triangulation before we can decide if it should be permanently removed. In
other words: we need to verify what the vertical error would be if the point was not
present.

Algorithm 3 shows the pseudo-code for the TIN decimation algorithm. It should be noticed
that the implementation of this algorithm requires a method to delete/remove a vertex from
a (Delaunay) triangulation, and that many libraries do not have one3.

2A greedy algorithm is one that divides a complex problem into a series of easier steps, then solves it by making
the locally optimal choice at each step. In our case the heuristic is the importance measure, ie the vertical error.
See https://en.wikipedia.org/wiki/Greedy_algorithm.

3The implementation in SciPy does not allow to remove one vertex, but CGAL does (www.cgal.org)

8 of 11

https://en.wikipedia.org/wiki/Greedy_algorithm
www.cgal.org

GEO1015/2018 Lesson 08

Algorithm 3: TIN simplification by decimation
Input: A set of input points S, and the simplification threshold εmax
Output: A triangulation T that consists of a subset of S and satisfies εmax

1 T ← a triangulation of S ;
2 ε← 0 ;
3 while ε < εmax do
4 ε← ∞ ;
5 q← nil ;
6 for all p ∈ T do
7 remove p from T ;
8 τ ← the triangle in T that contains p ;
9 ετ ← the vertical error of p with respect to τ ;

10 if ετ < ε then
11 ε← ετ ;
12 q← p ;

13 put back p into T ;

/* remove the point q that has the smallest error: */

14 remove from T the point q ;

Observe that the Algorithms 2 and 3 both state that the importance of the points must be
completely recomputed after each iteration of the algorithms (either one removal or one inser-
tion), but that in practice several of these will not have changed. As can be seen in Lesson 03,
the insertion/deletion of a single point/vertex will only locally modify the triangulation, and
it is thus faster from a computational point of view to flag the vertices incident to the modified
triangles, and only update these.

3.3 Comparison: decimation versus refinement

While both methods will allow us to obtain similar results, the properties of the resulting
terrain are different. Consider the threshold εmax that is used to stop the simplification process.
If the refinement method is used, then it is guaranteed that the final surface of the terrain will
be at a maximum of εmax (vertical distance) to the ‘real surface’ because all the points of the
input are considered. However, with the decimation method, after a vertex is deleted from the
TIN, it is never considered again when assessing whether a given vertex has an error larger
than εmax. It is thus possible that the final surface does not lie within εmax, although for normal
distribution of points, it should not deviate too much from it.

In practice, refinement is often computationally more efficient than decimation because we
do not need to first build a TIN from all input points before removing several of them again.
However, decimation could be more efficient when you already have a detailed TIN, stored in
a topological data structure, that just needs to be slightly simplified.

4 Conversion isolines to TIN/raster creates the ‘wedding cake
effect’

If the input is a set of isolines, then the simplest solution is, as shown in Figure 7a, to convert
these to points and then use any of the interpolation methods previously discussed. This
conversion can be done by either keeping only the vertices of the polylines, or by sampling

9 of 11

GEO1015/2018 Lesson 08

(a) (b) (c)

Figure 7: The ‘wedding cake’ effect. (a) The input isolines have been discretised into sample
points. (b) The TIN of the samples creates several horizontal triangles. (c) The surface
obtained with nearest-neighbour interpolation.

points at regular intervals long the lines (say every 10m). However, one should be aware that
doing so will create terrains having the so-called wedding cake effect. Indeed, the TIN obtained
with a Delaunay triangulation, as shown in Figure 7b, contains several horizontal triangles;
these triangles are formed by 3 vertices from the same isoline. If another interpolation method
is used, eg nearest neighbour (Figure 7c), then the results are catastrophic.

Solving this problem requires solutions specifically designed for such inputs. The main
ideas for most of them is to add extra vertices between the isolines, to avoid having horizontal
triangles. One strategy that has proven to work is to add the new vertices on the skeleton, or
medial-axis transform, of the isolines, which are located ‘halfway’ between two isolines. The
elevation assigned to these is based on the elevations of the isolines. Lesson 09 explains in
details what the medial-axis transform is.

5 Notes & comments

The Implicit Function Theorem is further explained in Sibson (1997).
Dakowicz and Gold (2003) describe in details the skeleton-based algorithm to interpolate

from isolines, and show the results of using different interpolation methods.
The basic algorithm to extract isolines, which is a brute-force approach, can be slow if for

instance only a few isolines are extracted from a very large datasets: all the n triangles/cells
are visited, and most will not have any intersections. To avoid this, van Kreveld (1996) build
an auxiliary data structure, the interval tree, which allows us to find quickly which triangles
will intersect a given elevation. It is also possible to build another auxiliary structure, the
contour tree, where the triangle seeds are stored (van Kreveld et al., 1997). Such methods
require more storage, but can be useful for interactive environment where the user extracts
isolines interactively.

Garland and Heckbert (1995) elaborate further on different aspects of TIN simplification,
such as different importance measures, the differences between refinement and decimation,
and the usefulness of data-dependent triangulations. They also show how Algorithm 2 can
be made a lot faster by only recomputing the importance of points in triangles that have been
modified.

References & further reading

Dakowicz M and Gold CM (2003). Extracting meaningful slopes from terrain contours. Inter-
national Journal of Computational Geometry and Applications, 13(4):339–357.

10 of 11

GEO1015/2018 Lesson 08

Garland M and Heckbert PS (1995). Fast polygonal approximation of terrain and height fields.
Technical Report CMU-CS-95-181, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA.

Sibson R (1997). Contour mapping: Principles and practice. Available at http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.51.63.

van Kreveld M (1996). Efficient methods for isoline extraction from a TIN. International Journal
of Geographical Information Science, 10(5):523–540.

van Kreveld M, van Oostrum R, Bajaj C, Pascucci V, and Schikore D (1997). Contour trees and
small seed sets for isosurface traversal. In Proceedings 13th Annual Symposium on Computa-
tional Geometry, pages 212–219. ACM Press, Nice, France.

11 of 11

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.63
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.63

	Conversion of PC/TIN to raster
	Conversion to isolines
	Conversion of raster to isolines
	Conversion TIN to isolines
	Structuring the output
	Smoothness of the contours

	Simplification of a TIN
	The importance of a point
	TIN simplification algorithms
	TIN simplification by refinement
	TIN simplification by decimation

	Comparison: decimation versus refinement

	Conversion isolines to TIN/raster creates the `wedding cake effect'
	Notes & comments

