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Given a set S of points pi in R2 (also called samples or data points in the following) to
which an attribute ai is attached, spatial interpolation is the procedure used to estimate the
value of the attribute at an unsampled location x. Its goal is to find a function f (x, y) that fits
(pass through, or close to, all the points in S) as well as possible. There is an infinity of such
functions, some are global and some are piecewise, an thus we the aim is to find one that is best
suited for the kind of datasets used as input. Interpolation is based on spatial autocorrelation,
that is the attribute of two points close together in space is more likely to be similar than that
of two points far from each other.

It should be noticed that the natural spatial extent of a set of sample is its convex hull, and
that an estimation outside this convex hull is extrapolation. Extrapolating implies that more
uncertainty is attached to the estimated value.

Spatial interpolation methods are crucial in the visualisation process (eg generation of con-
tours lines), for the conversion of data from one format to another (eg from scattered points to
raster), to have a better understanding of a dataset, or simply to identify ‘bad’ samples. The
result of interpolation—usually a surface that represents the terrain—must be as accurate as
possible because it often forms the basis for spatial analysis, for example runoff modelling or
visibility analysis. Although interpolation helps in creating three-dimensional surfaces, in the
case of terrains it is intrinsically a two-dimensional operation because only the (x, y) coordi-
nates of each sample are used, and the elevation is the dependent attribute. Notice that the
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Figure 1: Spatial interpolation and extrapolation.

attribute used need not be only elevation, for other GIS applications one could use the spatial
interpolation methods below for for instance rainfall amounts, percentage of humidity in the
soil, maximum temperature, etc. Spatial interpolation in 3D is also possible (but out of scope
for this course), in that case there are 3 independent variables (x, y, z) and one dependent vari-
able, for instance the temperature of the sea at different depth, or the concentration of a certain
chemical in the ground.

1 What is a good interpolation method for terrains?

The essential properties of an ‘ideal’ interpolation method for bivariate geoscientific datasets
are as follows:

1. exact: the interpolant must ‘honour’ the data points, or ‘pass through’ them.

2. continuous: a single and unique value must be obtained at each location. This is called
a C0 interpolant in mathematics (see Figure 2).

3. smooth: it is desirable for some applications to have a function for which the first or
second derivative is possible everywhere; such functions are respectively referred to as
C1 and C2 interpolants.

4. local: the interpolation function uses only some neighbouring samples to estimate the
value at a given location. This ensures that a sample with a gross error will not propagate
its error to the whole interpolant.

5. adaptability: the function should give realistic results for anisotropic data distributions
and/or for datasets where the data density varies greatly from one location to another.

6. computationally efficient: it should be possible to implement the method and get an
efficient result. Efficient is of course subjective. For a student doing this course, efficiency
might mean that the method generates a result in matter of minutes or an hour on a
laptop, for the homework dataset. For a mapping agency, running a process for a day on
a supercomputer for a whole country might be efficient.

7. automatic: the method must require as little input as possible from the user, ie it should
not rely on user-defined parameters that require a priori knowledge of the dataset.

2 Fitting polynomials

2.1 One global function

We know that if we have n points in S in in R3 (the samples are lifted to their elevation), there
is one polynomial of degree at most n− 1.
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(a) C0 interpolant (b) C1 interpolant (c) C2 interpolant

Figure 2: C0 interpolant is a function that is continuous but the first derivative is not possible at
certain locations; C1 interpolant has its first derivative possible everywhere; C2 interpolant
has its second derivative possible everywhere (this one is more difficult to draw).
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Figure 3: A few of the interpolation methods shown for a 1D dataset. (a) Input sample points.
(b) Polynomial fitting, and the Runge’s effect shown. (c) Natural neighbour. (d) Linear
interpolation in TIN.

This interpolant will be exact, continuous and smooth (at least C2). However, it will not be
local (which is problematic for terrains), and finding the polynomial of a high degree for large
datasets might be impossible (or take a lot of time).

The biggest concern polynomials is probably that while the interpolant is exact (the surface
passes through the sample points), higher-degree polynomials can oscillate between the sam-
ples and ‘overshoot’, ie be (far) outside the minimum or maximum z values of the the set S.
This is known as the Runge’s phenomenon in numerical analysis, and is shown in Figure 3.

2.2 Splines: piecewise polynomials

Splines are piecewise polynomials, each piece is connected to its neighbouring piece in a
smooth manner: along the edges and at the data points the function is usually still C1 or C2

(in other words, where 2 or more polynomials connect, they have the same values for their
tangents).

In practice, for terrain modelling, splines are preferred over one polynomial function be-
cause of the reasons mentioned above (mostly Runge’s effect) and because computing the
polynomial for large datasets is very inefficient. The polynomials used in each piece of the
subdivision is usually of low degree (≤ 5)

There are several types of splines (and variation of them, such as Bézier), and most of them
are not suited for terrains. The most used spline in practice seems to be the regularised spline
with tension (RST), where the dataset is decomposed into square pieces of a certain size. The
Runge’s effect (also called overshoots) are eliminated (since the degree is low), and the tension
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parameter can be tuned to obtain an interpolant that is smooth. The method is available in the
GRASS GIS.

3 Weighted-average methods

The five interpolation methods discussed in this section are weighted-average methods. These are
methods that use a subset of the sample points, to which a weight (importance) are assigned,
to estimate the value of the dependent variable. The interpolation function f of such methods
have the following form:

f (x) = ∑k
i=1 wi(x) ai

∑k
i=1 wi(x)

(1)

where wi(x) is the weight of each neighbouring data point pi (with respect to the interpolation
location x) used in the interpolation process, and ai the attribute of pi. A neighbour pi here
is a sample point that is used to estimate the value of location x. In the context of terrain
modelling, the attribute a is elevation.

3.1 Nearest Neighbour Interpolation

Nearest neigbour, or closest neighbour, is a simple interpolation method: the value of an at-
tribute at location x is simply assumed to be equal to the attribute of the nearest data point.
This data point gets a weight of 1.0. Given a set S of data points, if interpolation is performed
with this method at many locations close to each other, the result is the Voronoi diagram (VD)
of S, where all the points inside a Voronoi cell have the same value.

Although the method possesses many of the desirable properties (it is exact, local and can
handle anisotropic data distributions), the reconstruction of continuous fields can not realisti-
cally be done using it since it fails lamentably properties 2 and 3. The interpolation function is
indeed discontinuous at the border of cells; if the location x is directly on an edge or vertex of
the VD(S), then which value should be returned?

3.2 Inverse distance weighting (IDW)

Inverse distance weighting (IDW)—also called inverse distance to a power, or distance-based
methods—is a family of interpolation methods using distance to identify the neighbours used,
and to assign them weights. IDW is probably the most known interpolation method and it is
widely used in many disciplines. As shown in Figure 5a, in two dimensions it often uses a
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Figure 4: (a) Nearest neighbour: the estimatated value at x is that of the closest data point. (b)
the Voronoi diagram can be used. (c) Ambiguity because p1, p2, and p3 are equidistant from
x; this causes discontinuities in the resulting surface.

4 of 10



GEO1015/2018 Lesson 04

x
p1

(a)

p2
p3

p45m

(b)

p1

p2

p3

p4
x

(c)

Figure 5: (a) IDW interpolation with a searching circle, and the weight assigned to each neigh-
bour used in the estimation. (b) IDW by choosing the closest neighbour in each quadrant.
(c) It has (serious) problems with datasets whose distribution of samples is anisotropic.

‘searching circle’, whose radius is user-defined, to select the data points pi involved in the
interpolation at location x. It is also possible to select for instance the 10 or 15 closest data
points, or do that according to certain directions (ie you can select for example 3 data points
in each quadrant; Figure 5b shows the case where the closest in each quadrant is used).

The weight wi(x) assigned to each pi for a location x is:

wi(x) = |xpi|−h (2)

where h defines the power to be used, and |ab| is the distance between a and b. The power h
is typically 2, but other weights, such as 3, can also be used. A very high power, say 5, will
assign very little importance to points that are far away.

It should be emphasised that the size of the radius of the searching circle influences greatly
the result of the interpolation: a very big radius means that the resulting surface will be smooth
or ‘flattened’; on the other hand, a radius that is too small might have dramatic consequences
if for example no data points are inside the circle (Figure 5c shows one example). A good
knowledge of the dataset is thus required to select this parameter.

This method has many flaws when the data distribution varies greatly in one dataset be-
cause a fixed-radius circle will not necessarily be appropriate everywhere in the dataset. Fig-
ure 5c shows one example where one circle, when used with a dataset extracted from contour
lines, clearly gives erroneous results at some locations. The major problem with the method
comes from the fact that the criterion, for both selecting data points and assigning them a
weight, is one-dimensional and therefore does not take into account the spatial distribution of
the data points close to the interpolation location.

IDW is exact, local, and can be implemented in an efficient manner. However, as mentioned
above, there are cases where is might not be continuous (nor smooth), it suffers from the
distribution of sample points, and we cannot claim that it is automatic since finding the correct
parameters for the search radius is usually a trial-and-error task. If the closest data points in
each quadrant are used, then the method can be made automatic and continuous.

3.3 Linear Interpolation in a TIN

This method is popular for terrain modelling applications and is based on a triangulation of
the data points. As is the case for the VD, a triangulation is a piecewise subdivision (tessel-
lation) of the plane, and in the context of interpolation a linear function is assigned to each
piece (each triangle). Interpolating at location x means first finding inside which triangle x
lies, and then the height is estimated by linear interpolation on the 3D plane defined by the
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Figure 6: Barycentric coordinates. Ai defines the area of a triangle.

three vertices forming the triangle (the samples are lifted to their elevation value). The num-
ber of samples used in the interpolation is therefore always 3, and their weight is based on the
barycentric value (see below). To obtain satisfactory results, this method is usually used in 2D
with a Delaunay triangulation because, among all the possible triangulations of a set of points
in the plane, it maximizes the minimum angle of each triangle.

The method is exact, continuous, local, adaptative, efficient, and automatic. Only the prop-
erty #3 is not fulfilled (at the edges of the triangles).

Barycentric coordinates. The linear interpolation in a triangle can be efficiently implemented
by using barycentric coordinates, which are local coordinates defined within a triangle. Refer-
ring to Figure 6, any point x inside a triangle p1 p2 p3 can be represented as a linear combination
of the 3 vertices:

x = w0 p0 + w1 p1 + w2 p2

and
w0 + w1 + w2 = 1

The coefficients ui are the barycentric coordinates of the point x with respect to the triangle
p1 p2 p3. Finding the coefficients w0, w1, and w2 can be done by solving a system of linear
equations. If we subtract p2 from x, and we use w2 = 1− w0 − w1, we obtain

x− p2 = w0(p0 − p2) + w1(p1 − p2)

We obtain 2 vectors (p0 − p2 and p1 − p2), which represent 2 edges of the triangle. This equa-
tion can be solved and we find that the 3 coefficients are equal of the area of the 3 triangle
subdividing the original triangle (as shown in Figure 6).

Higher-order function in each triangle. Notice that it is possible to modify the linear function
inside each triangle by a higher-order function. As as the case for splines, there are several
ways to achieve this, and the details of these is out of scope for this course. These methods
are usually used more for finite element analysis where the flow of a certain fluid (eg wind)
around or through a mechanical piece is studied.

Most methods would define a cubic Bézier polynomial inside each triangle (which is C1),
and then ensure that the function is C1 along the edges and at the 3 vertices of the triangles. To
achieve this the normals of each vertex is calculated by averaging the normals of the incident
triangles, and the normal along an edge is computed similarly with the 2 incident triangles.

3.4 Natural Neighbour Interpolation

This is a method based on the Voronoi diagram for both selecting the data points involved in
the process, and assigning them a weight. It uses two VDs: one for the set S of data points, and
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Figure 7: Natural neighbour coordinates in 2D for the interpolation point x. The shaded poly-
gon is Vx.

another one where a point x is inserted at the estimation location. The insertion of x modifies
locally a VD(S): the Voronoi cell Vx of x ‘steals’ some parts of some Voronoi cells of VD(S), as
shown in Figure 7. This idea forms the basis of natural neighbour coordinates, which define
quantitatively the amount Vx steals from each of its natural neighbours. Let D be the VD(S),
and D+ = D ∪ {x}. The Voronoi cell of a point p in D is defined by Vp, and V+

p is its cell in
D+. The natural neighbour coordinate of x with respect to a point pi is

wi(x) =
Area(Vpi ∩ V+

x )

Area(V+
x )

(3)

where Area(Vpi) represents the area of Vpi . For any x, the value of wi(x) will always be be-
tween 0 and 1: 0 when pi is not a natural neighbour of x, and 1 when x is exactly at the same
location as pi. A further important consideration is that the sum of the areas stolen from each
of the k natural neighbours is equal to Area(V+

x ), in other words:

k

∑
i=1

wi(x) = 1. (4)

Therefore, the higher the value of wi(x) is, the stronger is the ‘influence’ of pi on x. The
natural neighbour coordinates are influenced by both the distance from x to pi and the spatial
distribution of the pi around x.

Natural neighbour interpolation is based on the natural neighbour coordinates. The points
used to estimate the value of an attribute at location x are the natural neighbours of x, and
the weight of each neighbour is equal to the natural neighbour coordinate of x with respect to
this neighbour. If we consider that each data point in S has an attribute ai (its elevation), the
natural neighbour interpolation function is

f (x) =
k

∑
i=1

wi(x) ai (5)

where f (x) is the interpolated function value at the location x.
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Figure 8: Resampling of an input grid, the output grid has different orientation.
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Figure 9: Bilinear interpolation.

The natural neighbour interpolant possesses all the wished properties from above, except
that the first derivative is undefined at the data points. Its main disadvantage is that its imple-
mentation is rather complex, and obtaining an efficient one is not simple and involves complex
manipulation of the VD.

3.5 Bilinear Interpolation

When one wants to know the value of the elevation at a location p, she can simply look at
the value of the pixel (which is equivalent to using nearest neighbour interpolation), but this
method has many drawbacks, for example when one needs to resample a grid. Resampling
means transforming an input grid so that the resolution and/or the orientation are different,
see Figure 8.

Bilinear interpolation has been shown to give better results. The method, which can be seen
as an ‘extension’ of linear interpolation for raster data, performs linear interpolation in one
dimension (say along the x axis), and then in the other dimension (y). Here one has to be
careful about the meaning of a grid: does the value of a pixel represent the value of the whole
pixel? or was the grid constructed by sampling the values at the middle of each pixel? In most
cases, unless metadata are available, it is not known. But in the context of terrain modelling,
we can assume that the value of a pixel represents the value at the centre of the pixel.

Suppose we have 4 adjacent pixels, each having an elevation, as in Figure 9. Bilinear inter-
polation uses the 4 centres to perform the interpolation at location p = (px, py); it is thus a
weighted-average method because the 4 samples are used, and their weight is based on the
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linear interpolation, as explained below. We need to linearly interpolation the values at loca-
tions q and r with linear interpolation, and then linearly interpolation along the y axis with
these values. Notice that the result is independent of the order of interpolation: we could start
with interpolation along the y axis and then the x axis and we would get the same result. For
the case in Figure 9, the calculation would go as follows:

f (q) = px−n4x
n3x−n4x

× (n3z − n4z) + n4z

f (r) = px−n1x
n2x−n1x

× (n2z − n1z) + n1z

f (p) = py−ry
qy−ry

∗ (qz − rz) + rz

The interpolant can be expressed as follows:

f (x) = a0 + a1x + a2y + a3xy (6)

where ai are 4 unknown that can be determined by solving 4 equations (one for each grid
node). If we assume that the lower-left pixel is at location (0, 0) and the top-right one at (1, 1),
then the 4 coefficients are:

a0 = n1z
a1 = n2z − n1z
a2 = n3z − n1z
a3 = n1z − n2z − n3z + n4z

4 Notes and comments

Watson (1992), in his authoritative book, lists the essential properties of an ‘ideal’ interpola-
tion method for bivariate geoscientific datasets; we have added computationally efficient and
automatic to the list.

Mitasova and Mitas (1993) gives a full description of the regularised splines with tension
(RST) interpolation method. This method has also been implemented in the open-source GIS
GRASS.

For a discussion about influence of the power in IDW on the resulting surface, please see
Watson (1992).

The natural neighbour interpolation method is also called Sibson’s interpolation, after the
name of the inventor (Sibson, 1981).

To obtain a continuous interpolant even at the data points, Sibson uses the weights defined
in Equation 3 in a quadratic equation where the gradient at x is considered. Other ways to
remove the discontinuities at the data points have been proposed: Watson (1992) describes
different methods to estimate the gradient at x and how to incorporate it in Equation 5; and
Gold (1989) proposes to modify the weight of each pi with a simple hermitian polynomial so
that, as x approaches pi, the derivative of f (x) approaches 0. Modifying Equation 5 to obtain
a continuous function can yield very good results in some cases, but with some datasets the
resulting surface can contain unwanted effects. Different datasets require different methods
and parameters, and, for this reason, modifications should be applied with great care.

The description of the barycentric coordinates is mostly taken from Eberly (2018).
The construction of a polynomial inside each triangle of a TIN can be done with several

methods. The simplest method is the Clough-Tocher method (Clough and Tocher, 1965; Farin,
1985). It splits each triangle into 3 sub-triangles (by inserting a temporary point at the centroid
of the triangle) and a cubic function is built over each.
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