
GEO1015/2018 Lesson 03

Triangulations & Voronoi diagrams

Lesson 03∗

1 The Voronoi Diagram 1

2 The Delaunay Triangulation 3
2.1 Convex Hull . 3
2.2 Local Optimality . 3
2.3 Angle Optimality . 4
2.4 Lifting on the paraboloid . 4
2.5 Degeneracies . 5

3 Duality between the DT and the VD 6

4 Incremental construction of the DT 6

5 Data structures for storing a DT 9

6 Constrained and Conforming Delaunay Triangulations 10

7 Triangulation of a polygon 12
7.1 The trivial case of a convex polygon . 12
7.2 Greedy algorithm for polygons with holes . 13
7.3 Ear clipping for polygons without holes . 13

8 Notes and comments 14

1 The Voronoi Diagram

Let S be a set of points in R2 (the two-dimensional Euclidean space). The Voronoi cell of a
point p ∈ S, defined Vp, is the set of points x ∈ R2 that are closer to p than to any other point
in S; that is:

Vp = {x ∈ R2 | ‖x− p‖ ≤ ‖x− q‖, ∀ q ∈ S}. (1)

The union of the Voronoi cells of all generating points p ∈ S form the Voronoi diagram of S,
defined VD(S). If S contains only two points p and q, then VD(S) is formed by a single line de-
fined by all the points x ∈ R2 that are equidistant from p and q. This line is the perpendicular

∗cba Hugo Ledoux, Ravi Peters, Ken Arroyo Ohori. This work is licensed under a Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)
(last update: November 2, 2018)

http://creativecommons.org/licenses/by/4.0/

GEO1015/2018 Lesson 03

(b)(a)

p

Figure 1: (a) The Voronoi cell Vp is formed by the intersection of all the half-planes between p
and the other points. (b) The VD for a set S of points in the plane (the black points). The
Voronoi vertices (white points) are located at the centre of the circle passing through three
points in S, provided that this circle contains no other points in S in its interior.

p

Figure 2: VD of a set of points in the plane (clipped by a box). The point p (whose Voronoi cell
is dark grey) has seven neighbouring cells (light grey).

bisector of the line segment from p to q, and splits the plane into two half-planes. Vp is formed
by the half-plane containing p, and Vq by the one containing q. As shown in Figure 1a, when S
contains more than two points (let us say it contains n points), the Voronoi cell of a given point
p ∈ S is obtained by the intersection of n − 1 half-planes defined by p and the other points
q ∈ S. That means that Vp is always convex. Notice also that every point x ∈ R2 has at least
one nearest point in S, which means that VD(S) covers the entire space.

As shown in Figure 1b, the VD of a set S of points in R2 is a planar graph. Its edges are the
perpendicular bisectors of the line segments of pairs of points in S, and its vertices are located
at the centres of the circles passing through three points in S. The VD in R2 can also be seen
as a two-dimensional cell complex where each 2-cell is a (convex) polygon (see Figure 2). Two
Voronoi cells, Vp and Vq, lie on the opposite sides of the perpendicular bisector separating the
points p and q.

The VD has many interesting properties, what follows is a list of the most relevant properties
in the context of this course.

Size: if S has n points, then VD(S) has exactly n Voronoi cells since there is a one-to-one
mapping between the points and the cells.

Voronoi vertices: a Voronoi vertex is equidistant from 3 data points. Observe for instance in
Figure 1b that the Voronoi vertices are at the centre of circles.

Voronoi edges: a Voronoi edge is equidistant from 2 points.

Convex hull: let S be a set of points in R2, and p one of its points. Vp is unbounded if p

2 of 15

GEO1015/2018 Lesson 03

(a) (b)

Figure 3: (a) The DT of a set of points in the plane (same point set as Figure 2). (b) Both the DT
(black lines) and the VD (dashed lines) of a set of points in the plane.

bounds conv(S). Otherwise, Vp is the convex hull of its Voronoi vertices. Observe that in
Figure 1b, only the point in the middle has a bounded Voronoi cell.

2 The Delaunay Triangulation

Let D be the VD of a set S of points in R2. Since VD(S) is a planar graph, it has a dual graph,
and let T be this dual graph obtained by drawing straight edges between two points p, q ∈ S
if and only if Vp and Vq are adjacent in D. Because the vertices in D are of degree 3 (3 edges
connected to it), the graph T is a triangulation. T is actually called the Delaunay triangulation
(DT) of S, and, as shown in Figure 3a, partitions the plane into triangles—where the vertices of
the triangles are the points in S generating each Voronoi cell—that satisfy the empty circumcircle
test (a circle is said to be empty when no points are in its interior). If S is in general position,
then DT(S) is unique.

2.1 Convex Hull

The DT of a set S of points subdivides completely conv(S), ie the union of all the triangles in
DT(S) is conv(S).

Let S be a set of points in R2, the convex hull of S, denoted conv(S), is the minimal convex
set containing S. It is best understood with the elastic band analogy: imagine each point in R2

being a nail sticking out of the plane, and a rubber band stretched to contain all the nails, as
shown in Figure 4. When released, the rubber band will assume the shape of the convex hull
of the nails. Notice that conv(S) is not only formed by the edges connecting the points (the
rubber band), but all the points of R2 that are contained within these edges (thus the whole
polygon).

2.2 Local Optimality

Let T be a triangulation of S in R2. An edge σ is said to be locally Delaunay if it either:

(i) belongs to only one triangle, and thus bounds conv(S), or

(ii) belongs to two triangles τa and τb, formed by the vertices of σ and respectively the vertices
p and p, and p is outside of the circumcircle of τa.

3 of 15

GEO1015/2018 Lesson 03

Figure 4: The convex hull of a set of points in R2.

a

b

c

d

Figure 5: Only one configuration is Delaunay (the left one).

The second case is illustrated in Figure 5: the triangles abd and bcd are Delaunay, and thus
is the edge bd; the edge ac is not Delaunay. In an arbitrary triangulation, not every edge
that is locally Delaunay is necessarily a edge of DT(S), but local optimality implies globally
optimality in the case of the DT:

Let T be a triangulation of a point set S in R2. If every edge of T is locally Delau-
nay, then T is the Delaunay triangulation of S.

This has serious implications as the DT—and its dual—are locally modifiable, ie we can theo-
retically insert, delete or move a points in S without recomputing DT(S) from scratch.

2.3 Angle Optimality

The DT in two dimensions has a very important property that is useful in applications such
as finite element meshing or interpolation: the max-min angle optimality. Among all the possi-
ble triangulations of a set S of points in R2, DT(S) maximises the minimum angle (max-min
property), and also minimises the maximum circumradii. In other words, it creates triangles
that are as equilateral as possible. Notice here that maximising the minimum angle is not the
same as minimising the maximum, and the DT only guarantees the former.

2.4 Lifting on the paraboloid

There exists a close relationship between DTs in Rd and convex polytopes in Rd+1.

4 of 15

GEO1015/2018 Lesson 03

S

S+

parabolic
lifting

Figure 6: The parabolic lifting map for a set S of points R2.

Let S be a set of points in Rd, and let x1, x2, . . . , xd be the coordinates axes. The parabolic
lifting map projects each vertex v(vx1, vx2, . . . , vxd) to a vertex v+(vx1, vx2, . . . , vxd, v2

x1 + v2
x2 +

· · ·+ v2
xd) on the paraboloid of revolution in Rd+1. The set of points thus obtained is denoted

S+. Observe that, for the two-dimensional case, the paraboloid in three dimensions defines
a surface whose vertical cross sections are parabolas, and whose horizontal cross sections are
circles; the same ideas are valid in higher dimensions.

The relationship is the following: every facet (a d-dimensional simplex) of the lower enve-
lope of conv(S+) projects to a d-simplex of the Delaunay triangulation of S. This is illustrated
in Figure 6 for the construction of the DT in R2.

In short, the construction of the d-dimensional DT can be transformed into the construction
of the convex hull of the lifted set of points in (d + 1) dimensions. In practice, since it is easier
to construct convex hulls (especially in higher dimensions, ie 4+), the DT is often constructed
with this method.

2.5 Degeneracies

The previous definitions of the VD and the DT assumed that the set S of points is in general
position, ie the distribution of points does not create any ambiguity in the two structures. For
the VD/DT in R2, the degeneracies, or special cases, occur when 3 points lie on the same
line and/or when 4 points are cocircular. For example, in two dimensions, when four or
more points in S are cocircular there is an ambiguity in the definition of DT(S). As shown in
Figure 7, the quadrilateral can be triangulated with two different diagonals, and an arbitrary
choice must be made since both respect the Delaunay criterion (points should not be on the
interior of a circumcircle, but more than three can lie directly on the circumcircle).

This implies that in the presence of four or more cocircular points, DT(S) is not unique.
Notice that even in the presence of cocircular points, VD(S) is still unique, but it has different
properties. For example, in Figure 7, the Voronoi vertex in the middle has degree 4 (remember
that when S is in general position, every vertex in VD(S) has degree 3). When three or more
points are collinear, DT(S) and VD(S) are unique, but problems with the implementation of
the structures can arise.

5 of 15

GEO1015/2018 Lesson 03

Figure 7: The DT for four cocircular points in two dimensions is not unique (but the VD is).

Figure 8: A graph G (black lines), and its dual graph G? (dashed lines).

3 Duality between the DT and the VD

Duality can have many different meanings in mathematics, but it always refers to the trans-
lation or mapping in a one-to-one fashion of concepts or structures. We use it in this course
in the sense of the dual graph of a given graph. Let G be a planar graph, as illustrated in
Figure 8 (black edges). Observe that G can also be seen as a cell complex in R2. The duality
mapping is as follows (also shown in details in Figure 9) The dual graph G? has a vertex for
each face (polygon) in G, and the vertices in G? are linked by an edge if and only if the two
corresponding dual faces in G are adjacent (in Figure 8, G? is represented with dashed lines).
Notice also that each polygon in G? corresponds to a vertex in G, and that each edge of G is
actually dual to one edge (an arc in Figure 8) of G? (for the sake of simplicity the dual edges
to the edges on the boundary of G are not drawn).

The VD and the DT are the best example of the duality between plane graphs.

4 Incremental construction of the DT

Since the VD and the DT are dual structures, the knowledge of one implies the knowledge of
the other one. In other words, if one has only one structure, she can always extract the other
one. Because it is easier, from an algorithmic and data structure point of view, to manage
triangles over arbitrary polygons (they have a constant number of vertices and neighbours),
constructing and manipulating a VD by working only on its dual structure is simpler and usu-
ally preferred. When the VD is needed, it is extracted from the DT. This has the additional ad-
vantage of speeding up algorithms because when the VD is used directly intermediate Voronoi
vertices—that will not necessarily exist in the final diagram—need to be computed and stored.

While there exists different strategies to construct at DT, we focus here on the incremental

6 of 15

GEO1015/2018 Lesson 03

DT VD

face ↔ vertex
vertex ↔ face
edge ↔ edge

Figure 9: Duality between the DT (dotted) and the VD (dashed).

p

Figure 10: The DT before and after a point p has been inserted. Notice that the DT is updated
only locally (only the shaded part of the triangulation is affected).

method (since it is easier to understand and implement). An incremental algorithm is one
where the structure is built incrementally; in our case this means that each point is inserted
one at a time in a valid DT and the triangulation is updated, with respect to the Delaunay
criterion (empty circumcircle), after each insertion. Observe that the insertion of a single point
p in a DT modifies only locally the DT, ie only the triangles whose circumcircle contains p
need to be deleted and replaced by new ones respecting the Delaunay criterion (see Figure 10
for an example). In sharp contrast to this, other strategies to construct a DT (eg divide-and-
conquer and plane sweep algorithms, see Section 8), build a DT in one operation (this is a
batch operation), and if another point needs to be inserted after this, the whole construction
operation must be done again from scratch. That hinders their use for some applications where
new data coming from a sensor would have to be added.

Figure 11 describes the algorithm, and Algorithm 1 its pseudo-code. In a nutshell, for the
insertion of a new point p in a DT(S), the triangle τ containing p is identified and then split
into three new triangles by joining p to every vertex of τ. Second, each new triangle is tested—
according to the Delaunay criterion—against its opposite neighbour (with respect to p); if it
is not a Delaunay triangle then the edge shared by the two triangles is flipped (see below) and
the two new triangles will also have to be tested later. This process stops when every triangle
having p as one of its vertices respects the Delaunay criterion.

Walk/Point location. To find the triangle containing the new inserted point p, we can use
the point-in-polygon test for every triangle (as explained in class), but that would be too slow.
An better alternative, is to use the adjacency relationships between the triangles, and use the

7 of 15

GEO1015/2018 Lesson 03

Figure 11: Step-by-step insertion, with flips, of a single point in a DT in two dimensions.

Algorithm 1: Algorithm to insert one point in a DT
Input: A DT(S) T , and a new point p to insert
Output: T p = T ∪ {p} // the DT with point p

1 find triangle τ containing p;
2 insert p in τ by splitting it in to 3 new triangles;
3 push 3 new triangles on a stack;
4 while stack is non-empty do
5 τ = {p, a, b} ← pop from stack;
6 τa = {a, b, c} ← get adjacent triangle of τ having the edge ab;
7 if c is inside circumcircle of τ then
8 flip the triangles τ and τa;
9 push 2 new triangles on stack;

side tests as described in the book to navigation from one triangle to the other, until we find
the the good one. The idea is shown in Figure 12

Flips. The flip operation we use to modify the triangulation is a simple local topological oper-
ation that modifies the configuration of two adjacent triangles. Consider the set S = {a, b, c, d}
of points in the plane forming a quadrilateral, as shown in Figure 13. There exist exactly two
ways to triangulate S: the first one contains the triangles abc and bcd; and the second one
contains the triangles abd and acd. Only the first triangulation of S is Delaunay because d is
outside the circumcircle of abc. A flip is the operation that transforms the first triangulation
into the second, or vice-versa.

Controlling the triangles. To control which triangles have to be checked, we use a stack.
When the stack is empty, then there are no more triangles to be tested, and we are guaranteed
that all the triangles in the triangulation have an empty circumcircle.

8 of 15

GEO1015/2018 Lesson 03

starting triangle

p

Figure 12: The Walk algorithm for a DT in two dimensions. The query point is p.

c

a

b

d

flip22

flip22

c

a

b

d

Figure 13: A flip22

Predicates Constructing a DT and manipulating it essentially require two basic geometric
tests (called predicates): ORIENTATION determines if a point p is left, right or lies on the line
segment defined by two points a and b; and INCIRCLE determines if a point p is inside, out-
side or lies on a circle defined by three points a, b and c. Both tests can be reduced to the
computation of the determinant of a matrix:

ORIENTATION(a, b, p) =

∣∣∣∣∣∣
ax ay 1
bx by 1
px py 1

∣∣∣∣∣∣ (2)

INCIRCLE(a, b, c, p) =

∣∣∣∣∣∣∣∣∣
ax ay a2

x + a2
y 1

bx by b2
x + b2

y 1
cx cy c2

x + c2
y 1

px py p2
x + p2

y 1

∣∣∣∣∣∣∣∣∣ (3)

5 Data structures for storing a DT

A triangulation is simply a subdivision of the plane into polygons, and thus any data structure
used in GIS can be used to store a triangulation.

Simple Features: while many use this (PostGIS and any triangulation you see in Shapefiles),
this is not very smart: (1) the topological relationships between the triangles are not
stored; (2) the vertices are repeated for each triangle (and we know that for a Poisson
distribution of points in the plane a given point has exactly 6 incident triangles).

edge-based structures: all the edge-based topological data structure discussed in GEO1002
(DCEL, half-edge, winged-edge, etc) can be used. These usually lead to large storage
space.

9 of 15

GEO1015/2018 Lesson 03

τ

τa

τb

τc

a

b

c
d

triangle v1 v2 v3 adj1 adj2 adj3
τ a b c τa τb τc
τa b d c τ... τ τ...
. .

Figure 14: The triangle-based data structure to store efficiently a triangulation (and the adja-
cency relationships between the triangles).

(a) (b) (c)

Figure 15: (a) A a set S of points and straight-line segments. (b) Constrained DT of S. (c)
Conforming DT of S; the Steiner points added are in red.

Observe that in practice, if only the DT is wanted (and not the constrained one, see below),
practitioners will often simply store the sample points and reconstruct on-the-fly the DT, since
it is unique (if we omit points not in general position that is).

However, because it is simpler to manage triangles over arbitrary polygons (they always
have exactly 3 vertices and 3 neighbours), data structures specific for triangulations have been
developed and are usually used.

The simplest data structure, as shown in Figure 14, considers the triangle as being its atom
and stores each triangle with 3 pointers to its vertices and 3 pointers to its adjacent triangles.

6 Constrained and Conforming Delaunay Triangulations

Given as input a set S of points and straight-line segments in the plane, different triangula-
tions of S (so that the segments are respected) can be constructed. We are mostly interested
in the constrained Delaunay triangulation (ConsDT) and the conforming Delaunay triangulation
(ConfDT).

Constrained DT (ConsDT). Given a set S of points and straight-line segments in R2, the
ConsDT permits us to decompose the convex hull of S into non-overlapping triangles, and
every segment of S appears as an edge in ConsDT(S). ConsDT is similar to the Delaunay
triangulation, but the triangles in ConsDT are not necessarily Delaunay (ie their circumcircle
might contain other points from S). The empty circumcircle for a ConsDT is less strict: a
triangle is Delaunay if its circumcircle contains no other points in S that are visible from the

10 of 15

GEO1015/2018 Lesson 03

3 buildings DT of the vertices
of the buildings

Constrained DT

Figure 16: The ConsDT of a set of segments. On the right, the triangle whose circumcircle is
green is a Delaunay (no other points in its interior) and so is the triangle whose circumcircle
is in blue (there is one point in its interior, but it cannot be seen because of the constrained
segment).

(a) (b) (c) (d) (e)

Figure 17: Steps to construct a ConsDT.

triangle. The constrained segments in S act a visibility blockers. Figure 16 shows one example.

Without going into details about one potential algorithm, one way to construct a ConsDT(S)
is (see Figure 17:

1. construct DT(Sp), where Sp is the set containing all the points in S and the end points of
the line segments (Figure 17b)

2. insert each line segment, each insertion will remove edges from DT(Sp). In Figure 17c 3
edges are removed.

3. this creates 2 polygons that need to be retriangulated, in Figure 17d there is a blue and a
green one.

4. retriangulate each separately, the Delaunay criterion needs to be verified only for the
vertices incident to the triangles incident to the hole/polygon.

Observe that the ConsDT can be used to triangulate polygons with holes(see Figure 18, it
suffices to remove the triangle outside the exterior boundary, but inside the convex hull.

11 of 15

GEO1015/2018 Lesson 03

Figure 18: Left: One polygon with 4 holes (interior rings). Right: its ConsDT.

(a) (b) (c)

Figure 19: (a) Input polygon (or set of segments). (b) ConsDT of the input. (c) ConfDT of the
input.

Conforming DT (ConfDT). A ConfDT adds new points to the input S (called Steiner points)
to ensure that the input segments are present in the triangulation. As Figures 19 and 15c show,
the input straight-line segments will be split into several collinear segments. The Steiner points
have to be carefully chosen (where to put them is beyond the scope of this course). Observe
that each triangle in a ConfDT respect the Delaunay criterion, but that more triangles are
present. If 2 segments are nearly parallel, many points could be necessary (for m segments, up
to m2 could be necessary).

7 Triangulation of a polygon

We describe here algorithms to decompose a polygon into non-overlapping triangles (that are
not necessarily Delaunay). While this is not directly related to the modelling of terrains (where
we do not have polygons, usually), the topic is relevant in GIS and, as seen below, constrained
are often used in terrains.

It is known that any simple polygon (even with holes) can be triangulated without adding
new vertices.

7.1 The trivial case of a convex polygon

If the polygon to triangulate is convex, then triangulating it is trivial with a fan-shaped triangu-
lation. As shown in Figure 20, the algorithm is simple: starting from an arbitrary vertex v of
the polygon P, and add edges joining v to all other vertices of P, except the previous and next

12 of 15

GEO1015/2018 Lesson 03

(a) (b)

Figure 20: Fan-shaped triangulation of a convex polygon.

Algorithm 2: A greedy algorithm to triangulate a simple polygon.
Input: Simple polygon P with n vertices
Output: Triangulation T of P

1 from the set D of m = n(n−3)
2 diagonals of P;

2 sort D into ascending order of length d1, . . . , dm;
3 triangulation T ← P;
4 for i← 1 to m do
5 if di does not intersect segments in T AND di is an internal diagonal of P then
6 T ← T ∪ di;

vertices in the ordered boundary of P. A polygon P with n vertices will be triangulated into
(n− 2) triangles.

7.2 Greedy algorithm for polygons with holes

A greedy algorithm makes at each step the locally optimal choice, and does not look at what
has been done before (it never goes back). It is very simple to understand and implement, but
can yield a very slow implementation.

A greedy algorithm to triangulation a simple polygon P is described in Algorithm 2. The
algorithm basically finds all the potential diagonals for P (all the pairs of vertices), sort them
based on their length (ascending length), and at each step of the algorithm the shortest diago-
nal is inserted if it does not intersect with other already inserted diagonals, and if it is inside P.
Diagonals that have been inserted are never removed. When all the possible diagonals have
been inserted, each triangle must be constructed by finding 3 segments (boundary of P and
diagonals). The algorithm is valid for polygon with holes, since all the possible combination
of diagonals could be tried.

7.3 Ear clipping for polygons without holes

An alternative—and faster—method is by using the “ear clipping” algorithm. As shown in
Figure 21, an ear is defined as 3 consecutive points of a polygon forming a triangle; abc is a
valid ear of the input polygon P, but cde is not (because the triangle is outside the polygon)
and neither is f gh (because d is inside the ear).. The idea of the ear clipping algorithm is to
identify a valid ear, remove it from the polygon and repeat this process (with the modified
polygon) until only one triangle is left. The implementation is simple: simply keep a list of

13 of 15

GEO1015/2018 Lesson 03

b

a

c

d

e f

g

h

i

j

an ear

a

c

d

f

g

h

i

j

b

a

c

d

e f

g

h

i

j

a

c

d

e f

g

h

i

j

a

c

d

g

h

i

j

a

c

d

g

h

j

Figure 21: Ear clipping algorithm and the various steps to obtain the triangulation; that last
steps are missing.

ordered vertices and each removal of an ear simply removes one vertex (in Figure 21 at the
first step the vertex b is removed).

Observe that this algorithm does not work with polygon having holes.
Finding a valid ear of a simple polygon P is relatively easy: if the points are ordered CCW

on the boundary of P, then 3 consecutive points must have a positive ORIENTATION; and to
verify that the ear is completely inside P the other points of P must be outside that triangle
(for instance in Figure 21 the point d would be inside the triangle f gh).

8 Notes and comments

For the construction of the DT, the incremental algorithm we use was first described by Law-
son (1972). Guibas and Stolfi (1985) describe a divide-and-conquer algorithm, and Fortune
(1987) a sweep-line one.

The local optimality of a DT, which implies globally optimality in the case of the DT, was
proven by Delaunay (1934) himself. The max-min angle optimality of the DT was firstly ob-
served by Sibson (1978). This paraboloic lifting was first observed by Brown (1979) (who
used a spherical transformation), further described by Seidel (1982); Edelsbrunner and Seidel
(1986).

The fact that the DT is computed only in 2D (without taking into account the elevation of
the vertices) has been criticised by several as sub-optimal for the modelling of terrain. To
remedy to this, Dyn et al. (1990) develop a data-dependent algorithm, and Gudmundsson et al.
(2002) propose using higher-order Delaunay triangulations (a modification where the empty
circumcircle is also based on the neighbours of the neighbours). Nevertheless, there are still
results stating that the Delaunay triangulation is still the one that minimises the roughness of
a surface (Wang et al., 2001; Rippa, 1990)

The Algorithm 2, is taken from Worboys and Duckham (2004, p. 202).
Shewchuk (1997) shows that while the triangle-based data structure requires twice as much

14 of 15

GEO1015/2018 Lesson 03

code as with the quad-edge (to store and construct a ConsDT), the result is that the code runs
twice as fast and the memory requirement as about 2X less. CGAL (https://www.cgal.org/),
among many others, uses the triangle-based data structure.

References & further reading

Brown KQ (1979). Voronoi diagrams from convex hulls. Information Processing Letters, 9(5):223–
228.

Delaunay BN (1934). Sur la sphère vide. Izvestia Akademia Nauk SSSR, Otdelenie Matematicheskii
i Estestvennyka Nauk, 7:793–800.

Dyn N, Levin D, and Rippa S (1990). Data dependent triangulations for piecewise linear in-
terpolation. IMA Journal of Numerical Analysis, 10(1):137–154.

Edelsbrunner H and Seidel R (1986). Voronoi diagrams and arrangements. Discrete & Compu-
tational Geometry, 1:25–44.

Fortune S (1987). A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174.

Gudmundsson J, Hammar M, and van Kreveld M (2002). Higher order Delaunay triangula-
tions. Computational Geometry—Theory and Applications, 23:85–98.

Guibas LJ and Stolfi J (1985). Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74–123.

Lawson CL (1972). Transforming triangulations. Discrete Applied Mathematics, 3:365–372.

Rippa S (1990). Minimal roughness property of the Delaunay triangulation. Computer Aided
Geometric Design, 7:489–497.

Seidel R (1982). Voronoi diagrams in higher dimensions. Ph.D. thesis, Diplomarbeit, Institut für
Informationsverarbeitung, Technische Universität Graz, Austria.

Shewchuk JR (1997). Delaunay Refinement Mesh Generation. Ph.D. thesis, School of Computer
Science, Carnegie Mellon University, Pittsburg, USA.

Sibson R (1978). Locally equiangular triangulations. The Computer Journal, 21:243–245.

Voronoi G (1908). Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. deuxiéme mémoire. recherches sur les parallélloèdres primitifs. Journal für
die Reine und Angewandte Mathematik, 134:198–287.

Wang K, Lo Cp, Brook GA, and Arabnia HR (2001). Comparison of existing triangulation
methods for regularly and irregularly spaced height fields. International Journal of Geograph-
ical Information Science, 15(8):743–762.

Worboys MF and Duckham M (2004). GIS: A computing perspective. CRC Press, second edition
edition.

15 of 15

https://www.cgal.org/

	The Voronoi Diagram
	The Delaunay Triangulation
	Convex Hull
	Local Optimality
	Angle Optimality
	Lifting on the paraboloid
	Degeneracies

	Duality between the DT and the VD
	Incremental construction of the DT
	Data structures for storing a DT
	Constrained and Conforming Delaunay Triangulations
	Triangulation of a polygon
	The trivial case of a convex polygon
	Greedy algorithm for polygons with holes
	Ear clipping for polygons without holes

	Notes and comments

