Voxels and voxelisation

GEO1004: 3D modelling of the built environment

https://3d.bk.tudelft.nl/courses/geo1004

Voxels: 3D pixels

- Simplicity: simple storage, simple processing methods, simple to use in applications
- Robustness: many issues solved automatically or at least more easily, few degenerate cases
- Speed: easy to do parallel processing by processing voxels independently

Nomenclature

- 2D:
 - pixel
 - image / 2D raster
 - (2D) rasterisation

- 3D:
 - voxel
 - voxel model / 3D raster
 - voxelisation / 3D rasterisation

Setup

Define domain (origin and orientation / axes)

2. Define resolution / voxel size

Setup

Define domain (origin and orientation / axes)

2. Define resolution / voxel size

Usual (dense) encoding

- 1. Define order for storage / traversal (first x 0...i, then y 0...j, then z 0...k)
- 2. Following the order: specify what is in each voxel, e.g. occupied or not, object IDs, field values, etc.
 - [..., false, true, true, false, ...]
 - [..., 1, 1, 3, 3, 1, ...]
 - [..., 3.45, 3.56, 3.78, 3.99, ...]

Sparse encoding

- List of entries containing for each voxel:
 - location (along x, y, z)
 - contents

• e.g. (x, y, z, ID) = ..., [100, 105, 0, 3], [101, 105, 0, 3], ...

What encoding is better?

Variations

- Varying sizes, e.g.
 - different size along z dimension
 - smaller size around an area of interest
- Differently shaped cells, e.g. octahedra

Hierarchical subdivisions

Hierarchical subdivisions

- Octrees: evenly along every axis
- Bintrees: evenly along alternating axes
- k-d trees: using a value along alternating axes

Voxelisation

Voxelisation of fields

Voxelisation of fields

- Nearest neighbour
- IDW
- Linear in tetrahedra
- Natural neighbour
- Kriging
- etc.

Voxels to points

Voxelisation of objects

Starting with 2D: rasterisation

In 2D: what is the difference?

In 2D: what is the difference?

4-connected

8-connected

2D targets

4-connectivity

2D targets

4-connectivity

Targets for points

Targets for areas

Targets for areas

Duality of targets in 2D

- To detect:
 - points (OD) -> squares (2D)
 - lines (1D) -> line segments (1D)
 - areas (2D) -> centre points (0D)

Duality of targets in 3D

- To detect:
 - points (OD) -> cubes (3D)
 - lines (1D) -> surfaces (2D)
 - surfaces (2D) -> line segments (1D)
 - volumes (3D) -> centre points (0D)

Connectivity in 3D

Voxelising points

Voxelising lines

Voxelising lines

Voxelising surfaces

Voxelising surfaces

Voxelising volumes?

What to do next?

- 1. Today:
 - Start with Homework 1 (triangulation of faces)
 - Go to geo1004 website and study today's lesson (3D book Chapter 4)
 - If you have extra time: study Wednesday's lesson (3D book Chapter 3)
- 2. Wednesday: demo on 3D Voronoi and help with lessons or Hw 1

https://3d.bk.tudelft.nl/courses/geo1004

