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3D representations in machine learning



What is ML / DL?
• Instead of explicitly programming rules to 

solve a problem… 

• use a system that attempts to learn these 
rules automatically using a large data set 
where the problem has been solved (training 
data). 

• Many such systems: regression, support 
vector machines (SVMs), decision trees, 
neural networks, clustering, principal 
component analysis (PCA), etc.
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What is ML / DL?

• Traditional machine learning: manually design features that meaningfully represent the 
characteristics of the data, then pass on the features for each data point to the system 

• Deep learning: pass the data as-is to a more complex system (deep neural network) 
which attempts to learn the features of the data on its own
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Successes of ML / DL

• Face and object recognition, e.g. finding pictures of certain people in your phone 

• Speech recognition and natural language, e.g. AI assistants 

• Translation between languages 

• Playing certain games, e.g. classical board games 

• Fraud detection, e.g. detecting suspicious card payments 

• (Hand)writing recognition, e.g. digitising books



ML / DL with 2D geodata

• Extracting features from imagery, e.g. buildings, roads, vegetation, etc. 

• Pattern recognition, e.g. image classification, clustering features, etc. 

• Weather / climate predictions, e.g. temperature or rain for next day 

• Routing, e.g. finding optimal routes for different transport modes



What about 3D geodata?



What makes 3D difficult?

• Voxels: very large sizes for good resolution -> methods for images don’t work as well 

• Trees: complex structure -> usually not suitable for ML / DL 

• Point clouds: very large sizes, no explicit structure 

• Meshes: easy to modify vertices but topology not so much -> problems with geometric 
errors or watertightness 



Today’s lecture

• Three very different approaches to deal with 3D data: 

• Machine learning with 3D features 

• Neural networks for point clouds 

• Implicit field representations



3D building metrics for urban 
morphology



significantly different buildings. 2.5D metrics, e.g. including the height as a descriptor,
set apart the first building from the last two. However, the last two buildings have the
same height, and thus, the 3 metrics shown so far are approximately equal, even
though the architecture of the buildings is substantially different. Taking advantage of
more detailed 3D building models, by computing more advanced and descriptive 3D
metrics, alleviates the ambiguity and is more indicative in capturing the shape of
buildings. Higher level of detail (LoD) 3D models often enable semantically rich infor-
mation (also illustrated in Figure 1), such as the area of the roof, another potentially
useful descriptor that we seek to leverage in our work.

The work presented in this paper is timely given the increasing availability of open
3D datasets, as there are opportunities to extend traditional 2D metrics to a 3D per-
spective, not only in theory but also in practice and at a large scale. Therefore, we

Figure 1. Motivation for advancing the dimensionality of urban morphology: distinct buildings
may have the same values of traditionally used 2 D and 2.5 D metrics, thus, going fully 3 D is
required to reduce ambiguity and enhance the characterisation. Data courtesy of 3 D BAG11 and
Bing Maps.12
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(2020). The study uses 3D building models with generalised roof shapes (LoD2) to
compute the architectural similarity of buildings and relate it to data on real estate
transactions. It was found that homogeneous districts tend to command a price pre-
mium. Therefore, the gaps in the analysis of the building form in true 3D are clear. In
our work, we develop a comprehensive catalogue of 3D metrics for studying the
shapes of buildings, and software to implement them.

3. The metrics

We compute a number of metrics that are related to the 3D characteristics of the
buildings and their models (Table 1). We divide these metrics into four categories,
based on the methodological similarities of their computation:

Geometric properties These are mostly statistics that refer to the properties of the
model of a building.

Derived properties Metrics that require some form of analysis and calculations, but
whose meaning is mostly direct and deterministic. They represent generic notions related
to the size and proportions of a building.

Spatial distribution Metrics that focus on the relationship between a building and
its neighbours.

Space indices Complex metrics that highlight more details about the shape of the
building. These are mostly based on the work of Basaraner and Cetinkaya (2017). Their
computation relies on complex calculations and they are independent of the building’s
size (see Appendix Table 1).

One interesting metric to highlight here is the concept of volume. There are mul-
tiple approaches to calculating the volume of a building. Figure 2 summarises the four
approaches that we test for calculating volumes in this paper. There is the actual vol-
ume, the volume of the convex hull, the volume of the object-oriented bounding box
and the volume of the axis-aligned bounding box. They are all useful depending on

Table 1. Metrics are computed per building based on category.
Geometric properties Number of vertices, Number of surfaces, Number of vertices by

semantic type (i.e. ground, roof, wall), Number of surfaces by
semantic type (i.e. ground, roof, wall), Min/Max/Range/Mean/Median/
Std/Mode height

Derived properties Footprint perimeter, Volume, Volume of convex hull, Volume of Object-
Oriented Bounding Box, Volume of Axis-Oriented Bounding Box,
Volume of voxelised building, Length and width of the Object-
Oriented Bounding Box, Surface area, Surface area by semantic
surface, Horizontal elongation, Min/Max vertical elongation,
Form factor

Spatial distribution Shared walls, Nearest neighbour
Space indices (see Table 3) Circularity/Hemisphericality!, Convexity 2D/3D!, Fractality 2D/3D!,

Rectangularity/Cuboidness!, Squareness/Cubeness!, Cohesion 2D/
3D!, Proximity 2D/3Dþ, Exchange 2D/3Dþ, Spin 2D/3Dþ, Perimeter/
Circumference!, Depth 2D/3Dþ, Girth 2D/3Dþ, Dispersion 2D/3Dx,
Range 2D/3D!, Equivalent Rectangular/Cuboid!, Roughnessx

!Formula-based index, size-independent by definition.
þIndex based on interior grid points (discretised), normalised.
xIndex based on surface grid points (discretised), normalised.
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Table 2. Definitions of 2D and 3D measures of shape complexity.
2D 3D

Circularity/
Hemisphericality

It measures the area deviation between
a polygon and its equal-perimeter
circle. Circle is generally assumed as
the most compact shape.

It measures the volume deviation
between a polyhedron and its
equal-area hemisphere. A
hemisphere was selected to
represent the space above ground.

Convexity It measures the area deviation between
a polygon and its convex hull. Thus,
it reveals a polygon’s degree of
being curved inward or outward.

It measures the volume deviation
between a polyhedron and its
convex hull. Thus, it reveals a
building’s degree of being curved
inward or outward.

Fractality It measures the edge roughness or
smoothness. Based on Wentz (2010).

It measures the surface roughness
or smoothness.

Rectangularity/
Cuboidness

It measures the area deviation between
a polygon and its minimum area
bounding rectangle. Thus, it reveals
a polygon’s degree of being
curved inward.

It measures the volume deviation
between a polyhedron and its
minimum volume bounding box.
Thus, it reveals a polyhedral’s
degree of being curved inwards.

Squareness/
Cubeness

It measures the perimeter deviation
between a polygon and its equal-
area square.

It measures the surface area deviation
between a polyhedron and its
equal-volume cube.

Cohesion It is a measure of overall accessibility
from all points to others within
a polygon.

It is a measure of overall accessibility
from all points to others within
a polyhedron.

Proximity It is a measure of overall accessibility
from all inner points to the centre
of a polygon.

It is a measure of overall accessibility
from all inner points to the centre
of a polyhedron.

Exchange It measures how much of the area
inside a circle is exchanged with the
area outside it to create
the polygon.

It measures how much of the volume
inside a sphere is exchanged with
the volume outside it to create
the polyhedron.

Spin It is appropriate for measuring
compactness when focus is on
shape extremities.

It is appropriate for measuring
compactness when focus is on
shape extremities.

Perimeter/
Circumference

It focuses on the compactness of a
polygon’s boundary.

It focuses on the compactness of a
polyhedron’s boundary.

Depth It focuses on the irregular changes
along the boundary of a polygon.

It focuses on the irregular changes
along the boundary of
a polyhedron.

Girth It is a measure of the thickness of the
layer insulating its innermost core
from its periphery.

It is a measure of the thickness of the
layer insulating its innermost core
from its periphery.

Dispersion As a small variant of Boyce and Clark’s
approach, it indicates whether a
phenomenon is propagating from
an epicentre equally in all directions.

As a small variant of Boyce and Clark’s
approach adapted to 3D. It indicates
whether a phenomenon is
propagating from an epicentre
equally in all directions.

Range It focuses attention on the distance
between the furthest edges of a
given polygon, and is therefore
subject to the undue influence of
small patches that are part of the
polygon but far away from the rest
of the polygon.

It focuses attention on the distance
between the furthest faces of a
given polyhedron, and is therefore
subject to the undue influence of
small patches that are part of the
polyhedron but far away from the
rest of the polygon.

Equivalent rectangular/
cuboid index

This index aims to measure deviation
of a polygon from an equivalent
rectangle, improving a drawback of
rectangularity. Rectangularity is too
sensitive to the protrusions along
the boundary of a building
footprint. This can cause a
significant increase in the size of the

This index aims to measure deviation
of a building from an equivalent
cuboid. Rectangularity is too
sensitive to the protrusions along
the boundary of a building. This can
cause a significant increase in the
size of the object’s minimum
volume bounding box, and thus can

(continued)
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discover the formula of the respective measure for a sphere and use this as the
denominator.

Some indices are more rudimentary, representing the resemblance of a shape with
the respective primitive; these are circularity, hemisphericality, rectangularity, cuboid-
ness, squareness, cubeness, equivalent rectangularity, and equivalent cuboidness. The rest
of the indices are mostly designed to represent characteristics of the shape, for
instance with respect to its compactness and thickness. Table 2 lists the definition of
every index, which provides its context and purpose.

4. Implementation

4.1. Software and engineering decisions

We implemented our methodology in a Python library ‘3DBM – 3D Building Metrics’,
and a set of command-line tools that computes the metrics of buildings in a CityJSON
file (Ledoux et al. 2019). For geometric processing, manipulation, and visualisation we
used PyVista (Sullivan and Kaszynski 2019) and PyMesh.6 We release our tool openly.7

In the implementation of the software, we needed to make certain engineering
decisions. Due to the nature of the definitions of the indices, and the non-determinis-
tic aspect of some elements used in them, the calculation of the indices can vary
based on the implementation. Many of them are based on calculations over interior or
surface grid points (Figure 4). Therefore, the density of the grid can impact the accur-
acy of the calculation.

We decided to use a voxelisation of the building, with the voxels being aligned to
the axes of the space. The size of voxels we used for our experiments was 0.5m,
which through a process of experimentation provided the best balance between preci-
sion and computational complexity. The same reasoning applies to the surface grid
points. This distance, though, can be configured accordingly to use a more dense or
sparse grid.

The definition of the centroid is another non-deterministic aspect of the calcula-
tions. To begin with, there is no clear consensus on what a centroid is and what its

Figure 4. Example of the grid construction for a building. The two grids (interior and surface
points) are used for the calculation of certain indices (see Table 1). (A) is the original building, (B)
is the voxels whose centers are used as interior grid points, and (C) is the points created for the
surface grid.
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given that LoD1 buildings are mainly simple block structures. Based on Table 5, it can
be observed that the intersection values tend to be higher for LoD2 buildings, which
might be due to the fact that the regular shapes of LoD1 models tend to be larger.
Median values for differences between LoDs range between 8% and 14%, which will
have a significant influence based on the application in question. While differences
can be observed, and are expected, it is also important to note that these differences
vary building by building, so the metrics can be utilised to check for cases where a
higher level of detail does not add any additional benefits, and also cases where 2D
or 2.5D is sufficient.

6. Use cases

6.1. Clustering

To verify the usefulness of 3D indices in identifying different building forms, we con-
ducted a hierarchical clustering and evaluated the uniformity and distinctiveness of
the resulting clusters on a random sample of 200,000 buildings (due to computational
constraints we could not run the analysis on the full dataset). We ran an
Agglomerative clustering algorithm10 using 11 features created based on a principal

Figure 8. Metric values for buildings of different complexities for the 2D footprint and the 3 D
building shape. B1, B2, … , B14 are used to name the individual buildings from the sample we
specifically selected as representative of the diversity of 3 D BAG.
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very different values on vertical elongation (which, from Section Differences between
2D and 3D indices, seems to contribute to some extent).

We believe this highlights an important finding: 3D indices are more reliable than
2D for identifying the real shape of a building. If we were to observe just their foot-
prints, we would not be able to know that these four buildings have such similar char-
acteristics. Nevertheless, we can intuitively consider them quite similar, to a certain
degree, by taking into account their 3D shape.

5.3. Comparison between LoDs

A comparison between different LoDs can be useful to determine the appropriate LoD
for an application, for example, energy consumption. A higher level of detail does not
mean a better level of detail and is instead use case dependent. Table 5 examines the
Boolean difference between all LoD1 and LoD2 buildings as based on Figure 3. By
examining Figure 7, we can also observe that there are differences in the distribution
of the index values between LoD1 and LoD2. LoD1 tends to have more normal distri-
butions for indices such as equivalent cuboidness and convexity, which makes sense

Table 4. Urban morphology metrics for several building examples visualised in Figure 8.
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

2D
Circularity 0.52 0.51 0.76 0.83 0.48 0.28 0.91 0.29 0.46 0.72 0.64 0.51 0.39 0.20
Convexity 0.92 0.90 0.99 0.98 0.94 0.86 0.98 0.73 0.84 0.98 0.94 0.80 0.86 0.68
Fractality 0.43 0.45 0.36 0.21 0.24 0.32 0.32 0.32 0.28 0.40 0.31 0.30 0.30 0.32
Rectangularity 0.85 0.81 0.99 0.92 0.74 0.69 0.79 0.58 0.83 0.96 0.89 0.61 0.72 0.58
Squareness 0.81 0.81 0.98 1.03 0.78 0.60 1.08 0.61 0.76 0.96 0.90 0.80 0.70 0.50
Equivalent rectangularity 0.92 0.90 0.99 1.03 0.78 0.60 1.08 0.61 0.77 0.98 0.90 0.82 0.73 0.54
Proximity 0.82 0.83 0.98 0.99 0.99 0.98 1.00 0.84 0.91 0.95 0.98 0.85 0.92 0.67
Exchange 0.68 0.68 0.90 0.92 0.93 0.90 0.98 0.75 0.81 0.83 0.92 0.74 0.78 0.53
Spin 0.61 0.61 0.94 0.97 0.97 0.94 1.00 0.71 0.81 0.88 0.95 0.69 0.80 0.43
Perimeter 0.72 0.71 0.87 0.91 0.69 0.53 0.96 0.54 0.68 0.85 0.80 0.71 0.62 0.45
Depth 0.67 0.67 0.88 0.91 0.88 0.84 0.97 0.52 0.67 0.83 0.85 0.64 0.74 0.41
Girth 0.56 0.60 0.82 0.84 0.83 0.92 0.90 0.51 0.58 0.70 0.79 0.52 0.67 0.44
Dispersion 0.70 0.70 0.90 0.93 0.93 0.91 0.98 0.75 0.79 0.84 0.91 0.74 0.79 0.56
Range 0.59 0.59 0.79 0.87 0.87 0.85 0.97 0.73 0.73 0.75 0.78 0.63 0.71 0.54
Roughness 0.70 0.69 0.82 0.85 0.49 0.29 0.93 0.29 0.50 0.80 0.67 0.57 0.43 0.21

3D
Hemisphericality 0.42 0.43 0.41 0.15 0.17 0.29 0.52 0.28 0.20 0.44 0.21 0.30 0.25 0.14
Convexity 0.88 0.89 0.91 0.23 0.67 0.85 0.94 0.58 0.59 0.87 0.85 0.74 0.55 0.49
Fractality 0.32 0.33 0.31 0.25 0.21 0.23 0.24 0.23 0.22 0.30 0.24 0.21 0.23 0.27
Cuboidness 0.62 0.60 0.83 0.17 0.43 0.64 0.70 0.42 0.52 0.70 0.73 0.48 0.27 0.30
Cubeness 0.88 0.90 0.87 0.44 0.49 0.68 1.00 0.66 0.54 0.90 0.56 0.71 0.62 0.42
Equivalent cuboidness 0.96 0.97 0.96 0.61 0.57 0.90 1.01 0.69 0.57 0.93 0.64 0.76 0.64 0.66
Proximity 0.83 0.83 0.78 0.32 0.68 0.76 0.96 0.76 0.73 0.89 0.69 0.75 0.78 0.41
Exchange 0.71 – 0.57 0 – 0.48 0.89 – – 0.78 – 0.52 – 0.14
Spin 0.65 0.66 0.58 0.10 0.46 0.55 0.91 0.56 0.51 0.78 0.43 0.51 0.56 0.15
Circumference 0.71 0.72 0.70 0.36 0.39 0.55 0.81 0.53 0.44 0.73 0.45 0.57 0.5 0.34
Depth 0.59 0.59 0.55 0.32 0.40 0.55 0.79 0.5 0.43 0.63 0.32 0.51 0.49 0.30
Girth 0.55 0.55 0.43 0.40 0.37 0.34 0.80 0.47 0.44 0.64 0.30 0.36 0.44 0.30
Dispersion 0.79 0.79 0.74 0.40 0.73 0.71 0.93 0.75 0.69 0.85 0.63 0.69 0.71 0.47
Range 0.57 0.60 0.60 0.32 0.57 0.58 0.80 0.59 0.54 0.65 0.47 0.50 0.51 0.28
Roughness 0.87 0.87 0.91 3.54 0.43 0.84 0.79 0.63 0.47 0.77 0.58 0.79 0.65 1.03
Form factor 1.11 1.04 2.04 8.87 2.75 2.55 1.04 1.55 0.83 0.98 0.49 0.58 1.84 4.65

Elongations
Horizontal elongation 0.64 0.62 0.16 0.12 0.00 0.12 0.01 0.02 0.14 0.35 0.05 0.31 0.42 0.54
Minimum vertical elongation 0.19 0.11 0.46 0.83 0.70 0.78 0.24 0.44 0.44 0.14 0.71 0.46 0.31 0.90
Maximum vertical elongation 0.56 0.57 0.36 0.81 0.69 0.75 0.24 0.42 0.52 0.24 0.72 0.63 0.16 0.78
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diverse building forms. As input data (3D city models), we used 3D BAG,8 an up-
to-date open dataset containing 3D building models of the whole of the Netherlands
(Peters et al. 2022). It contains 3D buildings at multiple LoDs, which are generated by
combining a point cloud with building footprints. The 3D BAG was selected to test
our implementation due to the open availability of the data, the vast geographic
scope that it covers, the various LoDs, and the relatively low level of geometric errors
in the data (as confirmed by Dukai et al. (2021) with the tool developed by
Ledoux (2018)).

The result is a series of 2D and 3D metrics for each of the 823,000 buildings in the
study area containing the four cities. We ran the full analysis with LoD1 and LoD2
data as well as the Boolean comparison between LoD1 and LoD2. We release our
work as open data under the licence CC BY 4.0. Our resulting dataset is available at
https://doi.org/10.7910/DVN/6QCRRF. The data is released as a set of CSV files, one for
each LoD.

The content of the dataset will be showcased in the subsequent sections in tabular
and visual ways, and also as part of two use cases in which we demonstrate the usability
of the metrics. Figure 5 gives insight into the generated dataset. The building-level metrics
(e.g. see the ones in Figure 1, which have been computed using our tool) have been
aggregated at the government administrative level (i.e. the generated dataset was associ-
ated with a government instance (neighbourhood area))—it shows two statistical measures
of an aggregation of one of the metrics, aiding in understanding the spatial distribution of
the building form of a city, i.e. central tendency and and dispersion in each area.

5. Data analysis

5.1. Errors

3D calculations are not trivial and errors can occur for two main reasons. First, the
input data can have geometric errors that were introduced during data creation.

Figure 5. The 3D urban form of a city. Aggregations of one of the 3D metrics (hemisphericality) at
the level of the administrative neighbourhoods (buurt) of the municipality of Amsterdam—mean
as a measure of central tendency (left); and another one (standard deviation) indicating its disper-
sion within each area (right). The maps highlight the difference between the historical city centre
with the well-known canal houses (ranking low on the hemisphericality index) and the newer
neighbourhoods. The administrative boundaries and the basemap are courtesy of Statistics
Netherlands, Stamen, and OpenStreetMap contributors.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 47



general, applicable to any type of 3D geometries and therefore can be used to conduct a
large variety of urban analysis from any 3D dataset, e.g. bridges, bus stops, etc. At the
same time, we identified an additional benefit from using 3D city models as our source
data, given that they support the storage of semantic data, such as roof and wall surfaces,
which allowed us to compute more properties that can be useful in a range of different
analyses (i.e. vertex and surface counts and areas based on semantics).

When “3dfying” the originally 2D indices, we needed to slightly deviate from the
original methodology in Basaraner and Cetinkaya (2017) in order to look for a more
meaningful output in the real world. For example, instead of extending from circularity
to sphericality, we chose to compute the hemisphericality as any resemblance of a
building shape to a sphere would not be realistic. It remains an open question,

Figure 13. Examples of classes with distinct characteristics from the hierarchical clustering analysis
based on the 3 D indices. The clustering input was eleven features based on principal components
that represented the original 3 D indices. We used the average linkage method to classify buildings
in 30 clusters (the number of clusters was selected after empirical experimentation with different
parameters, with the goal to form meaningful clusters).
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PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas
Stanford University

Abstract

Point cloud is an important type of geometric data
structure. Due to its irregular format, most researchers
transform such data to regular 3D voxel grids or collections
of images. This, however, renders data unnecessarily
voluminous and causes issues. In this paper, we design a
novel type of neural network that directly consumes point
clouds, which well respects the permutation invariance of
points in the input. Our network, named PointNet, pro-
vides a unified architecture for applications ranging from
object classification, part segmentation, to scene semantic
parsing. Though simple, PointNet is highly efficient and
effective. Empirically, it shows strong performance on
par or even better than state of the art. Theoretically,
we provide analysis towards understanding of what the
network has learnt and why the network is robust with
respect to input perturbation and corruption.

1. Introduction

In this paper we explore deep learning architectures
capable of reasoning about 3D geometric data such as
point clouds or meshes. Typical convolutional architectures
require highly regular input data formats, like those of
image grids or 3D voxels, in order to perform weight
sharing and other kernel optimizations. Since point clouds
or meshes are not in a regular format, most researchers
typically transform such data to regular 3D voxel grids or
collections of images (e.g, views) before feeding them to
a deep net architecture. This data representation transfor-
mation, however, renders the resulting data unnecessarily
voluminous — while also introducing quantization artifacts
that can obscure natural invariances of the data.

For this reason we focus on a different input rep-
resentation for 3D geometry using simply point clouds
– and name our resulting deep nets PointNets. Point
clouds are simple and unified structures that avoid the
combinatorial irregularities and complexities of meshes,
and thus are easier to learn from. The PointNet, however,

* indicates equal contributions.

mug?

table?

car?

Classification Part Segmentation

PointNet

Semantic Segmentation

Input Point Cloud (point set representation)

Figure 1. Applications of PointNet. We propose a novel deep net
architecture that consumes raw point cloud (set of points) without
voxelization or rendering. It is a unified architecture that learns
both global and local point features, providing a simple, efficient
and effective approach for a number of 3D recognition tasks.

still has to respect the fact that a point cloud is just a
set of points and therefore invariant to permutations of its
members, necessitating certain symmetrizations in the net
computation. Further invariances to rigid motions also need
to be considered.

Our PointNet is a unified architecture that directly
takes point clouds as input and outputs either class labels
for the entire input or per point segment/part labels for
each point of the input. The basic architecture of our
network is surprisingly simple as in the initial stages each
point is processed identically and independently. In the
basic setting each point is represented by just its three
coordinates (x, y, z). Additional dimensions may be added
by computing normals and other local or global features.

Key to our approach is the use of a single symmetric
function, max pooling. Effectively the network learns a
set of optimization functions/criteria that select interesting
or informative points of the point cloud and encode the
reason for their selection. The final fully connected layers
of the network aggregate these learnt optimal values into the
global descriptor for the entire shape as mentioned above
(shape classification) or are used to predict per point labels
(shape segmentation).

Our input format is easy to apply rigid or affine transfor-
mations to, as each point transforms independently. Thus
we can add a data-dependent spatial transformer network
that attempts to canonicalize the data before the PointNet
processes them, so as to further improve the results.
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Point clouds vs. neural networks

• Unordered: reordering points in a point cloud shouldn’t affect the result 

• Transformation invariance: rotating or translating a point cloud shouldn’t affect the 
result 

• Local structure: points need to be analysed together with other nearby points (not in 
isolation)
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture
Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture
Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

n input points (x, y, z)



in
pu

t p
oi

nt
s

point features

ou
tp

ut
 sc

or
es

max
pool

shared shared 

shared 

nx
3

nx
3

nx
64

nx
64 nx1024

1024

n  x 1088

nx
12

8

mlp (64,64) mlp (64,128,1024)input
transform

feature
transform

mlp
(512,256,k)

global feature

mlp (512,256,128)

T-Net

matrix
multiply

3x3
transform

T-Net

matrix
multiply

64x64
transform

shared 

mlp (128,m)

output scores

nx
m

k

Classification Network

Segmentation Network

in
pu

t p
oi

nt
s

point features

ou
tp

ut
 sc

or
es

max
pool

shared shared 

shared 

nx
3

nx
3

nx
64

nx
64 nx1024

1024

n  x 1088

nx
12

8

mlp (64,64) mlp (64,128,1024)input
transform

feature
transform

mlp
(512,256,k)

global feature

mlp (512,256,128)

T-Net

matrix
multiply

3x3
transform

T-Net

matrix
multiply

64x64
transform

shared 

mlp (128,m)

output scores

nx
m

k

Classification Network

Segmentation Network

Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture
Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

align to canonical space
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Figure 3: Two examples of applying the parameterised sampling grid to an image U producing the output V .
(a) The sampling grid is the regular grid G = TI(G), where I is the identity transformation parameters. (b)
The sampling grid is the result of warping the regular grid with an affine transformation T✓(G).
For clarity of exposition, assume for the moment that T✓ is a 2D affine transformation A✓. We will
discuss other transformations below. In this affine case, the pointwise transformation is
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where (xt

i
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i
) are the target coordinates of the regular grid in the output feature map, (xs

i
, y

s

i
) are

the source coordinates in the input feature map that define the sample points, and A✓ is the affine
transformation matrix. We use height and width normalised coordinates, such that �1  x

t

i
, y

t

i
 1

when within the spatial bounds of the output, and �1  x
s

i
, y

s

i
 1 when within the spatial bounds

of the input (and similarly for the y coordinates). The source/target transformation and sampling is
equivalent to the standard texture mapping and coordinates used in graphics [8].

The transform defined in (10) allows cropping, translation, rotation, scale, and skew to be applied
to the input feature map, and requires only 6 parameters (the 6 elements of A✓) to be produced by
the localisation network. It allows cropping because if the transformation is a contraction (i.e. the
determinant of the left 2⇥ 2 sub-matrix has magnitude less than unity) then the mapped regular grid
will lie in a parallelogram of area less than the range of x

s

i
, y

s

i
. The effect of this transformation on

the grid compared to the identity transform is shown in Fig. 3.

The class of transformations T✓ may be more constrained, such as that used for attention

A✓ =


s 0 tx

0 s ty

�
(2)

allowing cropping, translation, and isotropic scaling by varying s, tx, and ty . The transformation
T✓ can also be more general, such as a plane projective transformation with 8 parameters, piece-
wise affine, or a thin plate spline. Indeed, the transformation can have any parameterised form,
provided that it is differentiable with respect to the parameters – this crucially allows gradients to be
backpropagated through from the sample points T✓(Gi) to the localisation network output ✓. If the
transformation is parameterised in a structured, low-dimensional way, this reduces the complexity
of the task assigned to the localisation network. For instance, a generic class of structured and dif-
ferentiable transformations, which is a superset of attention, affine, projective, and thin plate spline
transformations, is T✓ = M✓B, where B is a target grid representation (e.g. in (10), B is the regu-
lar grid G in homogeneous coordinates), and M✓ is a matrix parameterised by ✓. In this case it is
possible to not only learn how to predict ✓ for a sample, but also to learn B for the task at hand.

3.3 Differentiable Image Sampling

To perform a spatial transformation of the input feature map, a sampler must take the set of sampling
points T✓(G), along with the input feature map U and produce the sampled output feature map V .

Each (xs

i
, y

s

i
) coordinate in T✓(G) defines the spatial location in the input where a sampling kernel

is applied to get the value at a particular pixel in the output V . This can be written as
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture
Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

small neural network to learn local structure

n points in 64D space (local features)
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture
Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

align to canonical space
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture
Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

deep network for complex features

n points in 1024D space (global features)
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture
Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

max of all points for all 1024 features

order invariant!
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture
Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

network to reduce 
features to k class scores



Figure 11. Precision-recall curves for object detection in 3D
point cloud. We evaluated on all six areas for four categories:
table, chair, sofa and board. IoU threshold is 0.5 in volume.

Query
Point Cloud

Top-5 Retrieval CAD Models

Figure 12. Model retrieval from point cloud. For every
given point cloud, we retrieve the top-5 similar shapes from the
ModelNet test split. From top to bottom rows, we show examples
of chair, plant, nightstand and bathtub queries. Retrieved results
that are in wrong category are marked by red boxes.

Shape Correspondence In this section, we show that
point features learnt by PointNet can be potentially used
to compute shape correspondences. Given two shapes, we
compute the correspondence between their critical point
sets CS’s by matching the pairs of points that activate
the same dimensions in the global features. Fig 13 and
Fig 14 show the detected shape correspondence between
two similar chairs and tables.

F. More Architecture Analysis (Sec 5.2)
Effects of Bottleneck Dimension and Number of Input
Points Here we show our model’s performance change
with regard to the size of the first max layer output as
well as the number of input points. In Fig 15 we see that
performance grows as we increase the number of points
however it saturates at around 1K points. The max layer
size plays an important role, increasing the layer size from

Figure 13. Shape correspondence between two chairs. For the
clarity of the visualization, we only show 20 randomly picked
correspondence pairs.

Figure 14. Shape correspondence between two tables. For the
clarity of the visualization, we only show 20 randomly picked
correspondence pairs.

64 to 1024 results in a 2�4% performance gain. It indicates
that we need enough point feature functions to cover the 3D
space in order to discriminate different shapes.

It’s worth notice that even with 64 points as input
(obtained from furthest point sampling on meshes), our
network can achieve decent performance.
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Figure 15. Effects of bottleneck size and number of input
points. The metric is overall classification accuracy on Model-
Net40 test set.

MNIST Digit Classification While we focus on 3D point
cloud learning, a sanity check experiment is to apply our
network on a 2D point clouds - pixel sets.

To convert an MNIST image into a 2D point set we
threshold pixel values and add the pixel (represented as a
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point features learnt by PointNet can be potentially used
to compute shape correspondences. Given two shapes, we
compute the correspondence between their critical point
sets CS’s by matching the pairs of points that activate
the same dimensions in the global features. Fig 13 and
Fig 14 show the detected shape correspondence between
two similar chairs and tables.
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that we need enough point feature functions to cover the 3D
space in order to discriminate different shapes.
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MNIST Digit Classification While we focus on 3D point
cloud learning, a sanity check experiment is to apply our
network on a 2D point clouds - pixel sets.

To convert an MNIST image into a 2D point set we
threshold pixel values and add the pixel (represented as a
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture
Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

for n points: local + 
global features 
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture
Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

for n points: 128 features
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture
Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

for n points: 
m class scores
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Figure 4. Qualitative results for semantic segmentation. Top
row is input point cloud with color. Bottom row is output semantic
segmentation result (on points) displayed in the same camera
viewpoint as input.

per point class in each block. Each point is represented by
a 9-dim vector of XYZ, RGB and normalized location as
to the room (from 0 to 1). At training time, we randomly
sample 4096 points in each block on-the-fly. At test time,
we test on all the points. We follow the same protocol as [1]
to use k-fold strategy for train and test.

We compare our method with a baseline using hand-
crafted point features. The baseline extracts the same 9-
dim local features and three additional ones: local point
density, local curvature and normal. We use standard MLP
as the classifier. Results are shown in Table 3, where
our PointNet method significantly outperforms the baseline
method. In Fig 4, we show qualitative segmentation results.
Our network is able to output smooth predictions and is
robust to missing points and occlusions.

Based on the semantic segmentation output from our
network, we further build a 3D object detection system
using connected component for object proposal (see sup-
plementary for details). We compare with previous state-
of-the-art method in Table 4. The previous method is based
on a sliding shape method (with CRF post processing) with
SVMs trained on local geometric features and global room
context feature in voxel grids. Our method outperforms it
by a large margin on the furniture categories reported.

5.2. Architecture Design Analysis
In this section we validate our design choices by control

experiments. We also show the effects of our network’s
hyperparameters.

Comparison with Alternative Order-invariant Methods
As mentioned in Sec 4.2, there are at least three options for
consuming unordered set inputs. We use the ModelNet40
shape classification problem as a test bed for comparisons
of those options, the following two control experiment will
also use this task.

The baselines (illustrated in Fig 5) we compared with
include multi-layer perceptron on unsorted and sorted
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Figure 5. Three approaches to achieve order invariance. Multi-
layer perceptron (MLP) applied on points consists of 5 hidden
layers with neuron sizes 64,64,64,128,1024, all points share a
single copy of MLP. The MLP close to the output consists of two
layers with sizes 512,256.

points as n⇥3 arrays, RNN model that considers input point
as a sequence, and a model based on symmetry functions.
The symmetry operation we experimented include max
pooling, average pooling and an attention based weighted
sum. The attention method is similar to that in [25], where
a scalar score is predicted from each point feature, then the
score is normalized across points by computing a softmax.
The weighted sum is then computed on the normalized
scores and the point features. As shown in Fig 5, max-
pooling operation achieves the best performance by a large
winning margin, which validates our choice.

Effectiveness of Input and Feature Transformations In
Table 5 we demonstrate the positive effects of our input
and feature transformations (for alignment). It’s interesting
to see that the most basic architecture already achieves
quite reasonable results. Using input transformation gives
a 0.8% performance boost. The regularization loss is
necessary for the higher dimension transform to work.
By combining both transformations and the regularization
term, we achieve the best performance.

Robustness Test We show our PointNet, while simple
and effective, is robust to various kinds of input corruptions.
We use the same architecture as in Fig 5’s max pooling
network. Input points are normalized into a unit sphere.
Results are in Fig 6.

As to missing points, when there are 50% points missing,
the accuracy only drops by 2.4% and 3.8% w.r.t. furthest
and random input sampling. Our net is also robust to outlier

Transform accuracy
none 87.1
input (3x3) 87.9
feature (64x64) 86.9
feature (64x64) + reg. 87.4
both 89.2

Table 5. Effects of input feature transforms. Metric is overall
classification accuracy on ModelNet40 test set.
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ABSTRACT:
High-resolution optical satellite sensors, combined with dense stereo algorithms, have made it possible to reconstruct 3D city
models from space. However, these models are, in practice, rather noisy and tend to miss small geometric features that are clearly
visible in the images. We argue that one reason for the limited quality may be a too early, heuristic reduction of the triangulated 3D
point cloud to an explicit height field or surface mesh. To make full use of the point cloud and the underlying images, we introduce
IMPLICITY, a neural representation of the 3D scene as an implicit, continuous occupancy field, driven by learned embeddings of
the point cloud and a stereo pair of ortho-photos. We show that this representation enables the extraction of high-quality DSMs:
with image resolution 0.5 m, IMPLICITY reaches a median height error of ⇡ 0.7 m and outperforms competing methods, especially
w.r.t. building reconstruction, featuring intricate roof details, smooth surfaces, and straight, regular outlines.

1. INTRODUCTION

Modern very high-resolution (VHR) satellite sensors have made
it possible to reconstruct sub-meter resolution 3D surface mod-
els from space. They are able to collect optical images with
ground sampling distances 0.5 m from multiple viewpoints
almost anywhere on Earth. Several software packages have
been developed to derive 3D models from such satellite images
(Krauß et al., 2013, De Franchis et al., 2014, Qin, 2016, Rupnik
et al., 2017, Beyer et al., 2018, Cournet et al., 2020, Youssefi
et al., 2020). Typically, they adopt stereo matching algorithms
originally developed for terrestrial or airborne photogrammetry.
The principle of such algorithms is to find a dense set of image
correspondences that have high photo-consistency and at the
same time form a (piece-wise) smooth surface. After match-
ing all suitable image pairs, the correspondences are triangu-
lated to 3D points and fused into a single point cloud, which is
commonly rasterized into a 2.5-dimensional height field (a.k.a.
digital surface model, DSM) for further use.

Due to limited image resolution, sub-optimal stereo geometry,
and radiometric differences caused by variable lighting and at-
mospheric effects, DSMs derived from satellite observations
tend to be noisy (see Figure 1). Moreover, high-frequency de-
tails that would, in principle, be visible in the images are barely
reconstructed. Those DSMs are thus often regarded as inter-
mediate products and processed further, with a refinement step
that aims to suppress noise and to impose a-priori assumptions
about the surface, like straight building edges and vertical walls.
Early attempts used low-level filtering and hand-coded rules.
More recent works rely on neural networks to learn the map-
ping from a coarse DSM to a refined one from data (Bittner et
al., 2019b, Bittner et al., 2019a, Bittner et al., 2020, Wang et al.,
2021, Stucker and Schindler, 2022).

A fundamental property shared by different DSM reconstruc-
tion and refinement methods is an explicit representation of the
surface, either as a mesh with a given number of vertices (re-
spectively, faces) or as a regular 2D grid of height values. Such
explicit parametrizations are convenient, but they do not pre-
serve all information contained in the original point cloud and
restrict the ability to resolve small structures. Recently, im-
plicit neural functions have emerged as a powerful and effect-
ive representation of 3D geometry (Park et al., 2019, Chen and
⇤ Corresponding author

IMPLICITY

Figure 1. IMPLICITY is a deep, implicit representation of
surface geometry. It is derived from a photogrammetric 3D point
cloud and associated images. Note the geometric details on the
roofs despite the substantial noise level of the input point cloud.

Zhang, 2019, Mescheder et al., 2019, Peng et al., 2020). In-
stead of discretizing the 3D scene into a set of explicit surface
elements, they implicitly model its geometry as a continuous
field of occupancies or signed distance values, encoded in the
weights of a neural network. The network can be evaluated at
any 3D coordinate and, therefore, conceptually, allows for in-
finite resolution—in practice, its effective resolution is bounded
by the representation power of the finite number of neurons, as
well as by the resolution of the training data.

So far, implicit representations have been explored to model
the 3D geometry of local shapes (Genova et al., 2019, Gen-
ova et al., 2020), single objects (Park et al., 2019, Atzmon and
Lipman, 2020), indoor scenes (Jiang et al., 2020, Peng et al.,
2020, Sitzmann et al., 2020, Chabra et al., 2020), and single
buildings (Chen et al., 2021). In this work, we go one step
further and investigate their potential to accurately reconstruct
3D urban scenes, on the order of several km2, from satellite
data. To that end, we introduce IMPLICITY, a coordinate-
based, implicit neural 3D scene representation based on a point
cloud derived from satellite photogrammetry. Since such point
clouds are comparatively sparse and lack high-frequency de-
tail, we additionally use an image stereo pair to guide the oc-
cupancy prediction. IMPLICITY reconstructs city models with
fine-grained shape details, smooth and well-aligned surfaces,
and crisp edges. It thereby reduces the mean absolute error by
>60% compared to a conventional stereo DSM.

2. RELATED WORK

Deep Implicit Functions. Deep implicit functions for surface
reconstruction have been proposed concurrently by (Mescheder
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Figure 2. Method overview. Satellite images are processed into a 3D point cloud and a coarse DSM as a basis for ortho-rectification
(left side). IMPLICITY takes the point cloud and ortho-photos as input and transforms them into a shape embedding  and an image

embedding ⇠, which can be decoded into occupancy values in continuous 3D space to recover a high-accuracy DSM.

world coordinates. Following (Peng et al., 2020), the resulting
feature “image”, with size H⇥W ⇥d, is processed further with
a 2D U-Net (Ronneberger et al., 2015), equipped with symmet-
ric skip connections to preserve high-frequency information. To
capture long-range context, the depth of the U-Net is set such
that its receptive field spans the entire feature image.

Satellite Image Embedding. Point clouds derived from satel-
lite images are comparatively sparse and fairly noisy (cf. Fig-
ure 1). As a consequence, they do not preserve high-frequency
details (like sharp roof edges or small dormers) that are, in prin-
ciple, visible in the images. To recover fine-grained geomet-
ric details, we thus build a second latent embedding ⇠ from
a panchromatic stereo pair. That image embedding is then
used as additional input to the decoder to guide the occupancy
prediction. The two images of the stereo pair are aligned by
ortho-rectifying both of them with the same, preliminary sur-
face model (cf. Section 4.1) and stacked into a two-channel im-
age. To generate ⇠, we process that image with an encoder sim-
ilar to the stacked hourglass architecture (Newell et al., 2016)
used in PIFu (Saito et al., 2019). To adapt it for our pur-
poses, we modify the first layer to accept our two-channel input
and change the hidden feature dimension d to match that of
the shape embedding  . Note that ortho-rectifying the images
(i) makes it possible to work with a single image embedding
despite the two different viewpoints, and (ii) ensures that the
embeddings  and ⇠ are correctly aligned.

Occupancy Decoder. The task of the decoder is to estimate the
occupancy probability at any location in scene space. Given a
point x 2 R3, we project it onto the horizontal (x, y) coordin-
ate plane and retrieve its shape code  (P,x) and image code
⇠(I,x) from the two embeddings with bilinear interpolation.
The occupancy at x, as a function of its coordinates x, shape
code  (P,x), and image code ⇠(I,x), is then predicted with a
network consisting of five consecutive, fully-connected ResNet
blocks. In our implementation, each ResNet block has d neur-
ons, and the sum  (P,x) + ⇠(I,x) of the two codes is added
as side input to every block, as in (Peng et al., 2020).
3.2 Network Variants
In our method, the stereo images are simply stacked and en-
coded independently of the point cloud. This raises the ques-
tion whether a single image might be enough, and whether the
use of images improves the reconstruction at all. To invest-
igate these questions, we construct two network variants that

differ w.r.t. the number and combination of input modalities but
are otherwise identical. In particular, we keep the network ar-
chitecture fixed and train each variant using the same training
settings and data samples. The network configuration based on
stereo guidance is our default setting, referred to as IMPLICITY-
stereo (or simply IMPLICITY if not stated otherwise). The first
variant, IMPLICITY-mono, uses only a single ortho-image to
generate the latent embedding ⇠. Therefore, it cannot exploit
stereo information (in the form of misalignment between ortho-
photos) and has to make do with image patterns and textures
from a single image, with no redundancy. The second variant,
IMPLICITY-0, has no access to image information. It learns
the mapping from 3D points to occupancies constrained only
by the shape embedding  , i.e., the local point distribution.
Note that this configuration corresponds to the original Convo-
lutional Occupancy Networks proposed in (Peng et al., 2020).

3.3 Training and Inference

At training time, we randomly sample query points
�
xi 2 R3

 

within the volume of interest and in the vicinity of the true sur-
face (see Section 3.4). The training is supervised by the binary
cross-entropy loss L between the predicted occupancies ô and
the true occupancies o at these points:

L(ô, o) =
X

i

�
oi · log(ôi) + (1� oi) · log(1� ôi)

�
. (2)

True occupancies oi are derived from an existing city model of
the training region. At inference time, we sample a regular 3D
grid of query points in a hierarchical fashion, see Section 3.5.

3.4 Spatial Sampling

One challenge when training implicit neural shape models is to
reach the right balance between expressiveness and generality,
which boils down to sampling adequate 3D points xi during
training. If points were uniformly sampled in 3D space, most
points would be far away from all surfaces. Consequently, the
learned model would be biased towards predicting free space,
as the dominant class in the absence of strong surface cues;
and towards overly smooth reconstructions, since it has rarely
seen surface details during training. On the other hand, if the
points were exclusively sampled in the vicinity of the surface,
the model would be prone to overfitting the training set, since
the learning would narrowly focus on specific properties of the
training area that may not generalize to other parts of the space.
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Figure 2. Method overview. Satellite images are processed into a 3D point cloud and a coarse DSM as a basis for ortho-rectification
(left side). IMPLICITY takes the point cloud and ortho-photos as input and transforms them into a shape embedding  and an image

embedding ⇠, which can be decoded into occupancy values in continuous 3D space to recover a high-accuracy DSM.

world coordinates. Following (Peng et al., 2020), the resulting
feature “image”, with size H⇥W ⇥d, is processed further with
a 2D U-Net (Ronneberger et al., 2015), equipped with symmet-
ric skip connections to preserve high-frequency information. To
capture long-range context, the depth of the U-Net is set such
that its receptive field spans the entire feature image.

Satellite Image Embedding. Point clouds derived from satel-
lite images are comparatively sparse and fairly noisy (cf. Fig-
ure 1). As a consequence, they do not preserve high-frequency
details (like sharp roof edges or small dormers) that are, in prin-
ciple, visible in the images. To recover fine-grained geomet-
ric details, we thus build a second latent embedding ⇠ from
a panchromatic stereo pair. That image embedding is then
used as additional input to the decoder to guide the occupancy
prediction. The two images of the stereo pair are aligned by
ortho-rectifying both of them with the same, preliminary sur-
face model (cf. Section 4.1) and stacked into a two-channel im-
age. To generate ⇠, we process that image with an encoder sim-
ilar to the stacked hourglass architecture (Newell et al., 2016)
used in PIFu (Saito et al., 2019). To adapt it for our pur-
poses, we modify the first layer to accept our two-channel input
and change the hidden feature dimension d to match that of
the shape embedding  . Note that ortho-rectifying the images
(i) makes it possible to work with a single image embedding
despite the two different viewpoints, and (ii) ensures that the
embeddings  and ⇠ are correctly aligned.

Occupancy Decoder. The task of the decoder is to estimate the
occupancy probability at any location in scene space. Given a
point x 2 R3, we project it onto the horizontal (x, y) coordin-
ate plane and retrieve its shape code  (P,x) and image code
⇠(I,x) from the two embeddings with bilinear interpolation.
The occupancy at x, as a function of its coordinates x, shape
code  (P,x), and image code ⇠(I,x), is then predicted with a
network consisting of five consecutive, fully-connected ResNet
blocks. In our implementation, each ResNet block has d neur-
ons, and the sum  (P,x) + ⇠(I,x) of the two codes is added
as side input to every block, as in (Peng et al., 2020).
3.2 Network Variants
In our method, the stereo images are simply stacked and en-
coded independently of the point cloud. This raises the ques-
tion whether a single image might be enough, and whether the
use of images improves the reconstruction at all. To invest-
igate these questions, we construct two network variants that

differ w.r.t. the number and combination of input modalities but
are otherwise identical. In particular, we keep the network ar-
chitecture fixed and train each variant using the same training
settings and data samples. The network configuration based on
stereo guidance is our default setting, referred to as IMPLICITY-
stereo (or simply IMPLICITY if not stated otherwise). The first
variant, IMPLICITY-mono, uses only a single ortho-image to
generate the latent embedding ⇠. Therefore, it cannot exploit
stereo information (in the form of misalignment between ortho-
photos) and has to make do with image patterns and textures
from a single image, with no redundancy. The second variant,
IMPLICITY-0, has no access to image information. It learns
the mapping from 3D points to occupancies constrained only
by the shape embedding  , i.e., the local point distribution.
Note that this configuration corresponds to the original Convo-
lutional Occupancy Networks proposed in (Peng et al., 2020).

3.3 Training and Inference

At training time, we randomly sample query points
�
xi 2 R3

 

within the volume of interest and in the vicinity of the true sur-
face (see Section 3.4). The training is supervised by the binary
cross-entropy loss L between the predicted occupancies ô and
the true occupancies o at these points:

L(ô, o) =
X

i

�
oi · log(ôi) + (1� oi) · log(1� ôi)

�
. (2)

True occupancies oi are derived from an existing city model of
the training region. At inference time, we sample a regular 3D
grid of query points in a hierarchical fashion, see Section 3.5.

3.4 Spatial Sampling

One challenge when training implicit neural shape models is to
reach the right balance between expressiveness and generality,
which boils down to sampling adequate 3D points xi during
training. If points were uniformly sampled in 3D space, most
points would be far away from all surfaces. Consequently, the
learned model would be biased towards predicting free space,
as the dominant class in the absence of strong surface cues;
and towards overly smooth reconstructions, since it has rarely
seen surface details during training. On the other hand, if the
points were exclusively sampled in the vicinity of the surface,
the model would be prone to overfitting the training set, since
the learning would narrowly focus on specific properties of the
training area that may not generalize to other parts of the space.
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Figure 2. Method overview. Satellite images are processed into a 3D point cloud and a coarse DSM as a basis for ortho-rectification
(left side). IMPLICITY takes the point cloud and ortho-photos as input and transforms them into a shape embedding  and an image

embedding ⇠, which can be decoded into occupancy values in continuous 3D space to recover a high-accuracy DSM.

world coordinates. Following (Peng et al., 2020), the resulting
feature “image”, with size H⇥W ⇥d, is processed further with
a 2D U-Net (Ronneberger et al., 2015), equipped with symmet-
ric skip connections to preserve high-frequency information. To
capture long-range context, the depth of the U-Net is set such
that its receptive field spans the entire feature image.

Satellite Image Embedding. Point clouds derived from satel-
lite images are comparatively sparse and fairly noisy (cf. Fig-
ure 1). As a consequence, they do not preserve high-frequency
details (like sharp roof edges or small dormers) that are, in prin-
ciple, visible in the images. To recover fine-grained geomet-
ric details, we thus build a second latent embedding ⇠ from
a panchromatic stereo pair. That image embedding is then
used as additional input to the decoder to guide the occupancy
prediction. The two images of the stereo pair are aligned by
ortho-rectifying both of them with the same, preliminary sur-
face model (cf. Section 4.1) and stacked into a two-channel im-
age. To generate ⇠, we process that image with an encoder sim-
ilar to the stacked hourglass architecture (Newell et al., 2016)
used in PIFu (Saito et al., 2019). To adapt it for our pur-
poses, we modify the first layer to accept our two-channel input
and change the hidden feature dimension d to match that of
the shape embedding  . Note that ortho-rectifying the images
(i) makes it possible to work with a single image embedding
despite the two different viewpoints, and (ii) ensures that the
embeddings  and ⇠ are correctly aligned.

Occupancy Decoder. The task of the decoder is to estimate the
occupancy probability at any location in scene space. Given a
point x 2 R3, we project it onto the horizontal (x, y) coordin-
ate plane and retrieve its shape code  (P,x) and image code
⇠(I,x) from the two embeddings with bilinear interpolation.
The occupancy at x, as a function of its coordinates x, shape
code  (P,x), and image code ⇠(I,x), is then predicted with a
network consisting of five consecutive, fully-connected ResNet
blocks. In our implementation, each ResNet block has d neur-
ons, and the sum  (P,x) + ⇠(I,x) of the two codes is added
as side input to every block, as in (Peng et al., 2020).
3.2 Network Variants
In our method, the stereo images are simply stacked and en-
coded independently of the point cloud. This raises the ques-
tion whether a single image might be enough, and whether the
use of images improves the reconstruction at all. To invest-
igate these questions, we construct two network variants that

differ w.r.t. the number and combination of input modalities but
are otherwise identical. In particular, we keep the network ar-
chitecture fixed and train each variant using the same training
settings and data samples. The network configuration based on
stereo guidance is our default setting, referred to as IMPLICITY-
stereo (or simply IMPLICITY if not stated otherwise). The first
variant, IMPLICITY-mono, uses only a single ortho-image to
generate the latent embedding ⇠. Therefore, it cannot exploit
stereo information (in the form of misalignment between ortho-
photos) and has to make do with image patterns and textures
from a single image, with no redundancy. The second variant,
IMPLICITY-0, has no access to image information. It learns
the mapping from 3D points to occupancies constrained only
by the shape embedding  , i.e., the local point distribution.
Note that this configuration corresponds to the original Convo-
lutional Occupancy Networks proposed in (Peng et al., 2020).

3.3 Training and Inference

At training time, we randomly sample query points
�
xi 2 R3

 

within the volume of interest and in the vicinity of the true sur-
face (see Section 3.4). The training is supervised by the binary
cross-entropy loss L between the predicted occupancies ô and
the true occupancies o at these points:

L(ô, o) =
X

i

�
oi · log(ôi) + (1� oi) · log(1� ôi)

�
. (2)

True occupancies oi are derived from an existing city model of
the training region. At inference time, we sample a regular 3D
grid of query points in a hierarchical fashion, see Section 3.5.

3.4 Spatial Sampling

One challenge when training implicit neural shape models is to
reach the right balance between expressiveness and generality,
which boils down to sampling adequate 3D points xi during
training. If points were uniformly sampled in 3D space, most
points would be far away from all surfaces. Consequently, the
learned model would be biased towards predicting free space,
as the dominant class in the absence of strong surface cues;
and towards overly smooth reconstructions, since it has rarely
seen surface details during training. On the other hand, if the
points were exclusively sampled in the vicinity of the surface,
the model would be prone to overfitting the training set, since
the learning would narrowly focus on specific properties of the
training area that may not generalize to other parts of the space.
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Figure 2. Method overview. Satellite images are processed into a 3D point cloud and a coarse DSM as a basis for ortho-rectification
(left side). IMPLICITY takes the point cloud and ortho-photos as input and transforms them into a shape embedding  and an image

embedding ⇠, which can be decoded into occupancy values in continuous 3D space to recover a high-accuracy DSM.

world coordinates. Following (Peng et al., 2020), the resulting
feature “image”, with size H⇥W ⇥d, is processed further with
a 2D U-Net (Ronneberger et al., 2015), equipped with symmet-
ric skip connections to preserve high-frequency information. To
capture long-range context, the depth of the U-Net is set such
that its receptive field spans the entire feature image.

Satellite Image Embedding. Point clouds derived from satel-
lite images are comparatively sparse and fairly noisy (cf. Fig-
ure 1). As a consequence, they do not preserve high-frequency
details (like sharp roof edges or small dormers) that are, in prin-
ciple, visible in the images. To recover fine-grained geomet-
ric details, we thus build a second latent embedding ⇠ from
a panchromatic stereo pair. That image embedding is then
used as additional input to the decoder to guide the occupancy
prediction. The two images of the stereo pair are aligned by
ortho-rectifying both of them with the same, preliminary sur-
face model (cf. Section 4.1) and stacked into a two-channel im-
age. To generate ⇠, we process that image with an encoder sim-
ilar to the stacked hourglass architecture (Newell et al., 2016)
used in PIFu (Saito et al., 2019). To adapt it for our pur-
poses, we modify the first layer to accept our two-channel input
and change the hidden feature dimension d to match that of
the shape embedding  . Note that ortho-rectifying the images
(i) makes it possible to work with a single image embedding
despite the two different viewpoints, and (ii) ensures that the
embeddings  and ⇠ are correctly aligned.

Occupancy Decoder. The task of the decoder is to estimate the
occupancy probability at any location in scene space. Given a
point x 2 R3, we project it onto the horizontal (x, y) coordin-
ate plane and retrieve its shape code  (P,x) and image code
⇠(I,x) from the two embeddings with bilinear interpolation.
The occupancy at x, as a function of its coordinates x, shape
code  (P,x), and image code ⇠(I,x), is then predicted with a
network consisting of five consecutive, fully-connected ResNet
blocks. In our implementation, each ResNet block has d neur-
ons, and the sum  (P,x) + ⇠(I,x) of the two codes is added
as side input to every block, as in (Peng et al., 2020).
3.2 Network Variants
In our method, the stereo images are simply stacked and en-
coded independently of the point cloud. This raises the ques-
tion whether a single image might be enough, and whether the
use of images improves the reconstruction at all. To invest-
igate these questions, we construct two network variants that

differ w.r.t. the number and combination of input modalities but
are otherwise identical. In particular, we keep the network ar-
chitecture fixed and train each variant using the same training
settings and data samples. The network configuration based on
stereo guidance is our default setting, referred to as IMPLICITY-
stereo (or simply IMPLICITY if not stated otherwise). The first
variant, IMPLICITY-mono, uses only a single ortho-image to
generate the latent embedding ⇠. Therefore, it cannot exploit
stereo information (in the form of misalignment between ortho-
photos) and has to make do with image patterns and textures
from a single image, with no redundancy. The second variant,
IMPLICITY-0, has no access to image information. It learns
the mapping from 3D points to occupancies constrained only
by the shape embedding  , i.e., the local point distribution.
Note that this configuration corresponds to the original Convo-
lutional Occupancy Networks proposed in (Peng et al., 2020).

3.3 Training and Inference

At training time, we randomly sample query points
�
xi 2 R3

 

within the volume of interest and in the vicinity of the true sur-
face (see Section 3.4). The training is supervised by the binary
cross-entropy loss L between the predicted occupancies ô and
the true occupancies o at these points:

L(ô, o) =
X

i

�
oi · log(ôi) + (1� oi) · log(1� ôi)

�
. (2)

True occupancies oi are derived from an existing city model of
the training region. At inference time, we sample a regular 3D
grid of query points in a hierarchical fashion, see Section 3.5.

3.4 Spatial Sampling

One challenge when training implicit neural shape models is to
reach the right balance between expressiveness and generality,
which boils down to sampling adequate 3D points xi during
training. If points were uniformly sampled in 3D space, most
points would be far away from all surfaces. Consequently, the
learned model would be biased towards predicting free space,
as the dominant class in the absence of strong surface cues;
and towards overly smooth reconstructions, since it has rarely
seen surface details during training. On the other hand, if the
points were exclusively sampled in the vicinity of the surface,
the model would be prone to overfitting the training set, since
the learning would narrowly focus on specific properties of the
training area that may not generalize to other parts of the space.

network to compute pixel features 
(based on PointNet)
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Figure 2. Method overview. Satellite images are processed into a 3D point cloud and a coarse DSM as a basis for ortho-rectification
(left side). IMPLICITY takes the point cloud and ortho-photos as input and transforms them into a shape embedding  and an image

embedding ⇠, which can be decoded into occupancy values in continuous 3D space to recover a high-accuracy DSM.

world coordinates. Following (Peng et al., 2020), the resulting
feature “image”, with size H⇥W ⇥d, is processed further with
a 2D U-Net (Ronneberger et al., 2015), equipped with symmet-
ric skip connections to preserve high-frequency information. To
capture long-range context, the depth of the U-Net is set such
that its receptive field spans the entire feature image.

Satellite Image Embedding. Point clouds derived from satel-
lite images are comparatively sparse and fairly noisy (cf. Fig-
ure 1). As a consequence, they do not preserve high-frequency
details (like sharp roof edges or small dormers) that are, in prin-
ciple, visible in the images. To recover fine-grained geomet-
ric details, we thus build a second latent embedding ⇠ from
a panchromatic stereo pair. That image embedding is then
used as additional input to the decoder to guide the occupancy
prediction. The two images of the stereo pair are aligned by
ortho-rectifying both of them with the same, preliminary sur-
face model (cf. Section 4.1) and stacked into a two-channel im-
age. To generate ⇠, we process that image with an encoder sim-
ilar to the stacked hourglass architecture (Newell et al., 2016)
used in PIFu (Saito et al., 2019). To adapt it for our pur-
poses, we modify the first layer to accept our two-channel input
and change the hidden feature dimension d to match that of
the shape embedding  . Note that ortho-rectifying the images
(i) makes it possible to work with a single image embedding
despite the two different viewpoints, and (ii) ensures that the
embeddings  and ⇠ are correctly aligned.

Occupancy Decoder. The task of the decoder is to estimate the
occupancy probability at any location in scene space. Given a
point x 2 R3, we project it onto the horizontal (x, y) coordin-
ate plane and retrieve its shape code  (P,x) and image code
⇠(I,x) from the two embeddings with bilinear interpolation.
The occupancy at x, as a function of its coordinates x, shape
code  (P,x), and image code ⇠(I,x), is then predicted with a
network consisting of five consecutive, fully-connected ResNet
blocks. In our implementation, each ResNet block has d neur-
ons, and the sum  (P,x) + ⇠(I,x) of the two codes is added
as side input to every block, as in (Peng et al., 2020).
3.2 Network Variants
In our method, the stereo images are simply stacked and en-
coded independently of the point cloud. This raises the ques-
tion whether a single image might be enough, and whether the
use of images improves the reconstruction at all. To invest-
igate these questions, we construct two network variants that

differ w.r.t. the number and combination of input modalities but
are otherwise identical. In particular, we keep the network ar-
chitecture fixed and train each variant using the same training
settings and data samples. The network configuration based on
stereo guidance is our default setting, referred to as IMPLICITY-
stereo (or simply IMPLICITY if not stated otherwise). The first
variant, IMPLICITY-mono, uses only a single ortho-image to
generate the latent embedding ⇠. Therefore, it cannot exploit
stereo information (in the form of misalignment between ortho-
photos) and has to make do with image patterns and textures
from a single image, with no redundancy. The second variant,
IMPLICITY-0, has no access to image information. It learns
the mapping from 3D points to occupancies constrained only
by the shape embedding  , i.e., the local point distribution.
Note that this configuration corresponds to the original Convo-
lutional Occupancy Networks proposed in (Peng et al., 2020).

3.3 Training and Inference

At training time, we randomly sample query points
�
xi 2 R3

 

within the volume of interest and in the vicinity of the true sur-
face (see Section 3.4). The training is supervised by the binary
cross-entropy loss L between the predicted occupancies ô and
the true occupancies o at these points:

L(ô, o) =
X

i

�
oi · log(ôi) + (1� oi) · log(1� ôi)

�
. (2)

True occupancies oi are derived from an existing city model of
the training region. At inference time, we sample a regular 3D
grid of query points in a hierarchical fashion, see Section 3.5.

3.4 Spatial Sampling

One challenge when training implicit neural shape models is to
reach the right balance between expressiveness and generality,
which boils down to sampling adequate 3D points xi during
training. If points were uniformly sampled in 3D space, most
points would be far away from all surfaces. Consequently, the
learned model would be biased towards predicting free space,
as the dominant class in the absence of strong surface cues;
and towards overly smooth reconstructions, since it has rarely
seen surface details during training. On the other hand, if the
points were exclusively sampled in the vicinity of the surface,
the model would be prone to overfitting the training set, since
the learning would narrowly focus on specific properties of the
training area that may not generalize to other parts of the space.
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Figure 2. Method overview. Satellite images are processed into a 3D point cloud and a coarse DSM as a basis for ortho-rectification
(left side). IMPLICITY takes the point cloud and ortho-photos as input and transforms them into a shape embedding  and an image

embedding ⇠, which can be decoded into occupancy values in continuous 3D space to recover a high-accuracy DSM.

world coordinates. Following (Peng et al., 2020), the resulting
feature “image”, with size H⇥W ⇥d, is processed further with
a 2D U-Net (Ronneberger et al., 2015), equipped with symmet-
ric skip connections to preserve high-frequency information. To
capture long-range context, the depth of the U-Net is set such
that its receptive field spans the entire feature image.

Satellite Image Embedding. Point clouds derived from satel-
lite images are comparatively sparse and fairly noisy (cf. Fig-
ure 1). As a consequence, they do not preserve high-frequency
details (like sharp roof edges or small dormers) that are, in prin-
ciple, visible in the images. To recover fine-grained geomet-
ric details, we thus build a second latent embedding ⇠ from
a panchromatic stereo pair. That image embedding is then
used as additional input to the decoder to guide the occupancy
prediction. The two images of the stereo pair are aligned by
ortho-rectifying both of them with the same, preliminary sur-
face model (cf. Section 4.1) and stacked into a two-channel im-
age. To generate ⇠, we process that image with an encoder sim-
ilar to the stacked hourglass architecture (Newell et al., 2016)
used in PIFu (Saito et al., 2019). To adapt it for our pur-
poses, we modify the first layer to accept our two-channel input
and change the hidden feature dimension d to match that of
the shape embedding  . Note that ortho-rectifying the images
(i) makes it possible to work with a single image embedding
despite the two different viewpoints, and (ii) ensures that the
embeddings  and ⇠ are correctly aligned.

Occupancy Decoder. The task of the decoder is to estimate the
occupancy probability at any location in scene space. Given a
point x 2 R3, we project it onto the horizontal (x, y) coordin-
ate plane and retrieve its shape code  (P,x) and image code
⇠(I,x) from the two embeddings with bilinear interpolation.
The occupancy at x, as a function of its coordinates x, shape
code  (P,x), and image code ⇠(I,x), is then predicted with a
network consisting of five consecutive, fully-connected ResNet
blocks. In our implementation, each ResNet block has d neur-
ons, and the sum  (P,x) + ⇠(I,x) of the two codes is added
as side input to every block, as in (Peng et al., 2020).
3.2 Network Variants
In our method, the stereo images are simply stacked and en-
coded independently of the point cloud. This raises the ques-
tion whether a single image might be enough, and whether the
use of images improves the reconstruction at all. To invest-
igate these questions, we construct two network variants that

differ w.r.t. the number and combination of input modalities but
are otherwise identical. In particular, we keep the network ar-
chitecture fixed and train each variant using the same training
settings and data samples. The network configuration based on
stereo guidance is our default setting, referred to as IMPLICITY-
stereo (or simply IMPLICITY if not stated otherwise). The first
variant, IMPLICITY-mono, uses only a single ortho-image to
generate the latent embedding ⇠. Therefore, it cannot exploit
stereo information (in the form of misalignment between ortho-
photos) and has to make do with image patterns and textures
from a single image, with no redundancy. The second variant,
IMPLICITY-0, has no access to image information. It learns
the mapping from 3D points to occupancies constrained only
by the shape embedding  , i.e., the local point distribution.
Note that this configuration corresponds to the original Convo-
lutional Occupancy Networks proposed in (Peng et al., 2020).

3.3 Training and Inference

At training time, we randomly sample query points
�
xi 2 R3

 

within the volume of interest and in the vicinity of the true sur-
face (see Section 3.4). The training is supervised by the binary
cross-entropy loss L between the predicted occupancies ô and
the true occupancies o at these points:

L(ô, o) =
X

i

�
oi · log(ôi) + (1� oi) · log(1� ôi)

�
. (2)

True occupancies oi are derived from an existing city model of
the training region. At inference time, we sample a regular 3D
grid of query points in a hierarchical fashion, see Section 3.5.

3.4 Spatial Sampling

One challenge when training implicit neural shape models is to
reach the right balance between expressiveness and generality,
which boils down to sampling adequate 3D points xi during
training. If points were uniformly sampled in 3D space, most
points would be far away from all surfaces. Consequently, the
learned model would be biased towards predicting free space,
as the dominant class in the absence of strong surface cues;
and towards overly smooth reconstructions, since it has rarely
seen surface details during training. On the other hand, if the
points were exclusively sampled in the vicinity of the surface,
the model would be prone to overfitting the training set, since
the learning would narrowly focus on specific properties of the
training area that may not generalize to other parts of the space.
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Figure 3. Visual comparison of different IMPLICITY variants with selected baselines. Heights are color-coded from blue to green to
yellow. All examples are from the test set.

plicit representation rather than 2.5D DSMs. IMPLICITY has
so far been validated under ideal machine learning conditions,
with training and test regions that lie next to each other and
have been observed in the same satellite images. Further work

is needed to assess its ability to generalize across variations in
stereo geometry, image radiometry, and geographic context. In
the extended technical report (Stucker et al., 2022), we provide
first, exploratory experiments for geographical generalization.
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Figure 3. Visual comparison of different IMPLICITY variants with selected baselines. Heights are color-coded from blue to green to
yellow. All examples are from the test set.

plicit representation rather than 2.5D DSMs. IMPLICITY has
so far been validated under ideal machine learning conditions,
with training and test regions that lie next to each other and
have been observed in the same satellite images. Further work

is needed to assess its ability to generalize across variations in
stereo geometry, image radiometry, and geographic context. In
the extended technical report (Stucker et al., 2022), we provide
first, exploratory experiments for geographical generalization.



Some thoughts on ML/DL with 3D



What to do next?

1. Today: 

• Start with Homework 3 (BIM to Geo using voxels) 

• Study for final exam (Lessons 1.1-6.2) 

2. Wednesday: overview applications (1st hour) and help (2nd hour) 

3. Thursday: help session with Dimitris



https://3d.bk.tudelft.nl/courses/geo1004 

https://3d.bk.tudelft.nl/courses/geo1004
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