Course introduction

GEO1004: 3D modelling of the built environment

https://3d.bk.tudelft.nl/courses/geo1004

Ken Arroyo Ohori

Hugo Ledoux

Ravi Peters

guest lecture

And you?

Name, experience and interest in 3D modelling

Course contents

- How is the built environment modelled in 3D?
 - Fundamentals / concepts
 - Data models and data structures
 - Guest lecture: reconstructing a city in LoD2
 - Applications

New-ish course

- Continuous improvements
 - 2020: Entirely new contents
 - 2022: 3D book
 - 2024: More info: Minkowski sum, new lesson
- Feedback is appreciated!

Prerequisites

- GEO1000 or knowledge of scripting/programming (in any language)
- GEO1002 or basic knowledge of (2D) GIS

• Optional: GEO1015 (Q2) covers complementary topics (2.5D vs 3D)

Blended learning

In your own time:

- 1. Watch videos
- 2. Read materials
- 3. Most important: work on assignments

Contact hours?

- Per week: 2x2h during Monday & Wednesday labs (13:45)
- At the beginning: short lectures, introduction to course/assignments, discussions and demos of course topics, feedback on assignments/exams, etc.
- Then: answer questions, discuss common issues, help with assignments, general programming questions, etc.
- At other times, you can still ask questions on Discord. We might just take longer to answer.

Extra help sessions

Dimitris Mantas

student assistant Help with C++ setup and assignments

Thursdays 16:00 - 17:30

Geolab

How to make the most of it

- 1. Keep up with the course schedule
- 2. Study (or at least skim) lessons in advance
- 3. If you have any doubts, ask questions
- 4. Make sure you can answer questions (at the end of book chapters)
- 5. Optional: read one or two external sources (in notes in each chapter)
- 6. Spend more time on assignments than on lessons

Lessons

- 1.1: Intro [K]
- 1.2: B-rep [K]
- 2.1: 3D DT / Voronoi [H]
- 2.2: Voxels [K]
- 3.1: ISO 19107 [H]
- 3.2: 3D city models [H]
- 4.1: MAT [K]

- 4.2: LoD2 reconstruction [R]
- 5.1: G-maps / c-maps [K]
- 5.2: Curves [K]
- 6.1: CSG [K]
- 6.2: BIM [K]
- 7.1: TBD [K]
- 7.2: Applications [K]

Assignments

- Programming tasks using C++ and open source libraries
- 10% hw1, 20% hw2 and hw3

- 0: C++ preparation (no deadline / not marked)
- 1: Triangulating polyhedron faces (Mar 1) -> available from Wednesday
- 2: Generalising a 3D city model (Mar 22) -> available in week 3
- 3: BIM processing (Apr 12) -> available in week 6

Two exams (in person)

- Mid-term
 - Lessons 1.1 4.1
 - Mar 13
 - 5% of final mark

Weighted average of 50% to pass the course

- Final
 - All lessons
 - Apr 12 @ 9:00
 - 45% of final mark

Resits

- One resit for both exams together (50%)
- One resit per assignment (mostly likely redo of assignment with modified tasks)
- June 28 @ 9:00

Course website

- No Brightspace!
- Everything is here: https://3d.bk.tudelft.nl/courses/geo1004/
- On Monday: check announcements/timetable

Questions?

In person during contact hours or Discord anytime:

- Don't hesitate to ask! General software/programming questions are fine too
- If possible, use geo1004 channel -> everyone can benefit from answers
- E-mail or Discord DM for personal matters

Introduction to 3D modelling of the built environment

Introduction to 3D modelling of the built environment

3D modelling of the built environment

- creation of 3D representations
- ...of anything, real world or not
- ...for animation, films, video games, industrial design, etc.

- focus on representations and techniques that are useful
- ...for real-world objects and fields
- ...in applications within geomatics and related fields

Why 3D?

Other applications

- Visualisation (eg for gaming, tourism, navigation, etc)
- Energy demand estimation (and potential for retrofitting)
- Computational fluid dynamics (eg for wind speeds, air quality, effects on buildings, etc)
- Shadow casting (eg for building permits, visibility analysis, improving energy demand/solar potential calculations, etc)

Homework O intro

Lesson 1.1 (intro)

- More of a glossary than a lesson. Read to know some important concepts and revisit it if you have doubts later in the course.
- Concepts behind the 3D modelling of the built environment:
 - Different ways to conceptualise 3D modelling process (abstractions vs. chain)
 - Geometry, topology and semantics: links to branches of mathematics
 - Objects vs. fields
 - Data models and data structures

What to do next?

- 1. Today:
 - Homework 0 (install required software for C++ assignments)
 - Go to geo1004 website and study today's lesson (3D book Chapter 1)
 - If you have extra time, study Wednesday's lesson (3D book Chapter 2)
- 2. Wednesday: short lecture on b-rep, intro to homework 1 and help with any questions about this week's lessons or C++ installation

https://3d.bk.tudelft.nl/courses/geo1004

References

• [21-25]: Level of detail in 3D city models. Filip Biljecki. PhD thesis. 2017.