Generalised maps and combinatorial maps

GEO1004: 3D modelling of the built environment

https://3d.bk.tudelft.nl/courses/geo1004

So far... (3D through b-rep)

So far... (3D through b-rep)

So far... (3D) through b-rep)

links between OD-2D elements

Links between 3D elements?

Drawbacks of b-rep

- Difficult to store:
 - Holes (2D and 3D)
 - Non-manifolds
 - Multiple volumes

Back to Jordan-Brouwer theorem

- In 2D, the Jordan curve theorem says: a closed curve separates the plane into two parts: an interior surface and an exterior surface
- In nD, the Jordan-Brouwer theorem, which in 3D says: a closed surface separates 3D space into two parts: an interior volume and an exterior volume.

Back to Jordan-Brouwer theorem

- Holes: one more exterior per hole (both 2D and 3D)
- Non-2-manifold around point: one more interior per point
- Multiple volumes: one more interior per extra volume

What are g-maps / c-maps?

- In short:
 - c-maps: generalisation of half-edge to nD
 - g-maps: c-maps split into two to avoid oriented edges

Why g-maps / c-maps?

- In short:
 - Possibility to store links between *n*D elements (including 3D)
 - With g-maps: no orientation issues during construction

Small background

Simplex

Simplex

Simplex properties

- An n-simplex in n-dimensional space:
 - is bounded by n+1 (n-1)-simplices
 - can have n+1 adjacent n-simplices, each of which shares a (n-1)-simplex on their common boundary

 \rightarrow Two adjacent n-simplices share all their vertices except for one

Cells

- O-cell: vertex
- 1-cell: edge
- 2-cell: polygon
- 3-cell: polyhedron
- ...

Barycentric triangulation

- nD c-maps (n-c-maps): barycentric triangulation n-cells from 2-cells
- nD g-maps (n-g-maps): barycentric triangulation of n-cells from 1-cells

- ... where
 - *n*-simplices are called **darts** and have vertices that are linked to elements of a certain dimension, and
 - only 0-cells have a location in space.

Intuitive meaning of a dart

- Informally:
 - a generalised map dart is a unique combination of a cell of every dimension: vertex, edge, face, volume, ...
 - a combinatorial map dart is a unique combination of a cell of every dimension from one upwards: edge, face, volume, ...

• Why informal? only true for a specific linear embedding

C-maps: orientation

Traversing darts

• From the properties of simplices: a dart d in an nD combinatorial/generalised map has n+1 adjacent darts, each of which shares all but one of the vertices of d.

→ Informally: Two adjacent darts share all of their cells except for one. e.g. if they differ in their edge, they share their vertex, face, volume, etc.

Traversing darts

- The link from an i-dimensional vertex of a dart d to the (other) i-dimensional vertex of its adjacent neighbour is called:
 - α_i in a generalised map
 - β_i in a combinatorial map
- ullet Informally, it means switching the i-cell of d for the i-cell of its neighbour

Traversing darts

- for all i, α_i is an involution
- for β > 1, β_i is also an involution
- but for for $\beta = 1$, β_i is a permutation

Storage

- In a generalised map, a list of darts of the form:
 - $d = [[\alpha_0(d), \alpha_1(d), \alpha_2(d), ...],$

• where each α is a link (ID, pointer) to another dart, and

 In a combinatorial map, a list of darts of the form:

•
$$d = [[\beta_1, \beta_2, ...],$$

- where each β is a link (ID, pointer) to another dart, and
- each a is an optional link to a data structure with the attributes for the i-cell of d, including the coordinates in a_0 .

In practice? CGAL

Simpler representation

Involutions and permutations

Orbits

Sewing

What to do next?

- 1. Today:
 - Continue with Homework 2 (generalisation of a 3D city model)
 - Study for midterm exam (Lessons 1.1-4.1)
 - Go to geo1004 website and study today's lesson (3D book Chapter 8)
- 2. Wednesday: midterm exam (1st hour) and help with lessons or Hw 2 (2nd hour)
- 3. Thursday: help session with Dimitris

https://3d.bk.tudelft.nl/courses/geo1004

