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Constructive solid geometry and Nef polyhedra



3D representations so far…

• Explicit geometries: 

• 3D objects through 2D (b-rep + meshes) 

• Voxels 

• 3D Delaunay tetrahedralisations / Voronoi diagrams



Explicit and implicit geometries

• Explicit: more direct descriptions, e.g. point coordinates or the equations typically used 
to describe shapes 

• Implicit: more indirect descriptions, e.g. sequences of operations or complex functions



Why implicit geoms?

• Compact: complex shapes can be represented by a few functions rather than many 
primitives in a mesh 

• Resolution independence: smooth shapes are always smooth, can be evaluated 
anywhere 

• Convertibility: much easier to convert to explicit geoms than vice versa



�� � Constructive solid geometry and Nef polyhedra

Figure �.�: A CSG object represented
as a tree of Boolean set operations on a
sphere, a cube and three cylinders. From
Wikimedia Commons.

Figure �.�: A plane separates �D space
into two parts on either side of it. A
plane and a direction can thus be used
to specify the geometry of one of these
halves, which forms an unbounded space
on all directions except one.
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Primitive instancing defines simple solids parametrically, such as a
sphere based on a radius and the coordinates of its centre;

Arbitrary polyhedra defined using mesh data structures and boundary
representation; and

Half-spaces (Figure �.�) defined using a plane equation and a direction.

The next section is a short summary of the mathematical background
for this chapter, which consists of set theory, Boolean set operations and
their mathematical notation. Feel free to skip it if you are familiar with
them. In the next two sections, we look at how the two main elements
of CSG work in theory: (i) the definition of simple objects as point sets,
and (ii) how these elements can be combined using Boolean point set
operations. The final section covers Nef polyhedra, which are arguably
the best known basis to implement CSG in practice.

�.� Background: set theory and Boolean set
operations

Set theory is the branch of mathematics that studies sets, which are
collections of abstract objects. These objects can be anything, including
other sets.

Set theory starts by considering the existence of a given domain of objects
from which one may build sets, which is known as the universe set and
denoted as U. If an object 0 is part of a set X, it is denoted as 0 2 X, which
is read as ‘0 is an element of X’. If 0 is not part of a set X, it is denoted as
0 8 X, which is read as ‘0 is not an element of X’. By convention, lower
case is usually used for simple elements and upper case for sets.

Constructive solid geometry

• In short: representing complex shapes 
as operations on simple shapes 

• operations: usually Boolean set ops + 
possibly some others 

• simple shapes: parametric shapes, 
half-spaces + maybe (some) 
polyhedra



Background



Sets

• Sets: collections of abstract objects called elements 

• {1, 2, 3} = {3, 2, 1} 

• Elements can be anything: letters, numbers, symbols or other sets 

• Defined using { and } in two ways: 

• Listing elements: {1, 2, 3} 

• Specifying rules: {𝑥 : 𝑥 is a prime number}



Set terms and notation

• Element 𝑎 is in set 𝕏: 𝑎 ∈ 𝕏 

• Element 𝑎 is not in set 𝕏: 𝑎 ∉ 𝕏 

• And (∧), or (∨) and not (¬) 

• Set with no elements: empty set, {} or ∅ 

• Set with all elements (within context): universe set or 𝕌



Set operations

• Similar to =, <, ≤, > and ≥: 

• 𝔸 = 𝔹: sets 𝔸 and 𝔹 have the same elements 

• 𝔸 ⊆ 𝔹: every element in 𝔸 is in 𝔹 

• 𝔸 ⊂ 𝔹: every element in 𝔸 is in 𝔹 and also 𝔹 has at least one more element that is 
not in 𝔸



Boolean set operations

• Union: 𝔸 ∪ 𝔹 = {𝑥 : 𝑥 ∈ 𝔸 ∨ 𝑥 ∈ 𝔹}     (elements that are in 𝔸 or in 𝔹) 

• Intersection: 𝔸 ∩ 𝔹 = {𝑥 : 𝑥 ∈ 𝔸 ∧ 𝑥 ∈ 𝔹}     (elements that are in 𝔸 and in 𝔹) 

• Difference: 𝔸 − 𝔹 = {𝑥 : 𝑥 ∈ 𝔸 ∧ 𝑥 ∉ 𝔹}     (elements that are in 𝔸 but not in 𝔹) 

• Complement: ¬𝔸 = {𝑥 : 𝑥 ∈ 𝕌 ∧ 𝑥 ∉ 𝔸}     (elements that are not in 𝔸)



Tuples

• Tuples: ordered sequences of elements (unlike sets) 

• (1, 2, 3) ≠ (3, 2, 1) 

• Defined using ( and ) 

• 2 elements: pair, 3 elements: treble/triplet, 𝑛 elements: 𝑛-tuple



Cartesian product

• Operation to build a set of tuples from sets 

• 𝔸 × 𝔹 = {(𝑎, 𝑏) : 𝑎 ∈ 𝔸 ∧ 𝑏 ∈ 𝔹} 

• Set of all possible tuples 

• …where the first element is in 𝔸 

• …and the second element is in 𝔹 

• 𝔸2 = 𝔸 × 𝔸, 𝔸3 = 𝔸 × 𝔸 × 𝔸, etc.



Point sets

• Set ℝ: all real numbers 

• Using Cartesian geometry, it’s possible to define space: 

• ℝ = {𝑥 : 𝑥 ∊ ℝ}: 1D space (i.e. the line) 

• ℝ2 = {(𝑥, 𝑦) : 𝑥 ∊ ℝ ∧ 𝑦 ∊ ℝ}: 2D space (i.e. the plane) 

• ℝ3= {(𝑥, 𝑦, 𝑧) : 𝑥 ∊ ℝ ∧ 𝑦 ∊ ℝ ∧ 𝑧∊ ℝ}: 3D space



Objects as point sets

• Starting from two points 𝑝1 and 𝑝2 

• The line 𝐿 passing through the points is 
given by {𝑡𝑝1 + (1−𝑡)𝑝2 : 𝑡 ∈ R} 

• Similar to weighted average / linear 
interpolation of points 

• Works in any dimension 𝑝1

𝑝2



Objects as point sets

Similar parametric equations for many objects, such as a plane: 

or half-space: 

<latexit sha1_base64="aAcF7lFZV6m6RTo35hbVjCiP0dw="></latexit>
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Objects as point sets

or a ball of radius 𝑟: 

or a cuboid (box): 

<latexit sha1_base64="dUdg6f8pK0ChV5QAV8H5ap5PS7Q="></latexit>
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C = {(x, y, z) : xmin  x  xmax ^ ymin  y  ymax ^ zmin  z  zmax}
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Primitive instancing defines simple solids parametrically, such as a
sphere based on a radius and the coordinates of its centre;

Arbitrary polyhedra defined using mesh data structures and boundary
representation; and

Half-spaces (Figure �.�) defined using a plane equation and a direction.

The next section is a short summary of the mathematical background
for this chapter, which consists of set theory, Boolean set operations and
their mathematical notation. Feel free to skip it if you are familiar with
them. In the next two sections, we look at how the two main elements
of CSG work in theory: (i) the definition of simple objects as point sets,
and (ii) how these elements can be combined using Boolean point set
operations. The final section covers Nef polyhedra, which are arguably
the best known basis to implement CSG in practice.

�.� Background: set theory and Boolean set
operations

Set theory is the branch of mathematics that studies sets, which are
collections of abstract objects. These objects can be anything, including
other sets.

Set theory starts by considering the existence of a given domain of objects
from which one may build sets, which is known as the universe set and
denoted as U. If an object 0 is part of a set X, it is denoted as 0 2 X, which
is read as ‘0 is an element of X’. If 0 is not part of a set X, it is denoted as
0 8 X, which is read as ‘0 is not an element of X’. By convention, lower
case is usually used for simple elements and upper case for sets.

A CSG engine

• Leaf nodes: primitives defined as point 
sets 

• Non-leaf nodes: Boolean set operations 
that operate on point sets 

• Combined geometries are just 
evaluations on point sets, e.g. on a voxel 
grid of arbitrary resolution



Nef polyhedra

• Alternative definition of polyhedra with: 

• non-manifolds 

• robust Boolean point set operations 

• Based on local pyramids 

• Operations can be performed at the local pyramid level



Local pyramids

• Intersection of an infinitesimally small 
circle (2D) or sphere (3D) located at 
each vertex 

• Dimension reduction mechanism in Nef 
polyhedra (akin to b-rep): 

• 2D Polygon as a set of vertices + 1D 
ranges 

• 3D Polyhedron as a set of vertices + 
2D sphere map

�.� Nef polyhedra ��

(a)

� �� ��� ���
(b)

Figure �.�: (a) A Nef polygon is repre-
sented indirectly as (b) a set of local pyra-
mids (circles). At every local pyramid,
the polygon (red) becomes an angular
interval. Incident edges become points
at the endpoints of these intervals.

local pyramid

subdivision

�.�.� Local pyramids

The local pyramid of a vertex contains the intersection of an infinitesimally
small sphere (in �D) or circle (in �D) with the volumes, faces and edges
incident to this vertex. An incident volume thus becomes a face, an
incident face becomes an edge, and an incident edge becomes a vertex
on the surface of the local pyramid sphere/circle, essentially lowering
the dimension of every object by one (just like boundary representation
does!).

The key thing to understand here is the following: a �D/�D object rep-
resented as a set of local pyramids (and their location) can individually be
stored using �D/�D data structures. This is a process akin to boundary
representation, but it does not have problems with non-manifold objects
(unlike boundary representation).

In practice, computing the local pyramid at a local vertex is also a
relatively simple operation. We will not go through the details here (see
the references in the notes if you are interested), but in �D, it involves
computing the angle of its neighbouring vertices as you rotate around
the vertex, and marking the intervals between these vertices with the
polygons that you pass through while doing so. In �D, it is a more
complex operation involving the computation of an arrangement of lines
in a spherical coordinate system, and the location of every neighbouring
vertex is defined by two angles (rather than one).

�.�.� Computing Boolean point set operations on Nef
polyhedra

Boolean point set operations on Nef polyhedra (and many other geometric
operations) can be computed in three steps: subdivision, selection and
simplification. This is a common scheme used in geometric computing in
general, and we will discuss what each of these involves in this specific
case.

Subdivision involves computing an overlay of the input polyhedra, thus
creating the overall structure where the result will be put (ie the
vertices, edges, faces and volumes).



Local pyramidsP. Hachenberger et al. / Computational Geometry 38 (2007) 64–99 69

Fig. 6. An example of a sphere map. The different colors indicate selected and unselected faces.

polyhedron boundary representation. It is convenient (conceptually and, in particular, in the implementation) to only
deal with bounded polyhedra; a reduction from arbitrary polyhedra to bounded polyhedra is described in Section 3.3.

3.1. Sphere map

The local pyramids of each vertex are represented by conceptually intersecting the local neighborhood with a small
ε-sphere. This intersection forms a planar map on the sphere (Fig. 6), which together with the set-selection mark for
each item forms a two-dimensional Nef polyhedron embedded in the sphere. We add the set-selection mark for the
vertex, i.e., the center of the sphere, and call the resulting structure the sphere map of the vertex. Sphere maps were
introduced previously in [12].

We use the prefix s to distinguish the elements of the sphere map from the three-dimensional elements. An svertex
corresponds to an edge intersecting the sphere. An sedge corresponds to a facet intersecting the sphere. Geometrically,
the edge forms a great arc that is part of the great circle in which the supporting plane of the facet intersects the
sphere. If a single facet intersects the sphere in a great circle, we get an sloop going around the sphere without any
incident svertex. There is at most one sloop per sphere map because a second sloop would intersect the first. An sface
corresponds to a volume. This representation extends the planar Nef polyhedron representation [39].

3.2. Selective Nef complex representation

Having sphere maps for all vertices of a bounded polyhedron is a sufficient, but not easily accessible representation
of the polyhedron. We enrich the data structure with more explicit representations of all the faces and incidences
between them. We also depart slightly from the definition of faces in a Nef polyhedron; we represent the connected
components of a face individually and do not implement additional bookkeeping to recover the original faces (e.g., all
edges on a common supporting line with the same local pyramid) as this is not needed in our algorithms. We discuss
features in the increasing order of dimension below; see also Fig. 7:

Edges: We store two oppositely oriented edges for each edge and have a pointer from one oriented edge to its
opposite edge. Such an oriented edge can be identified with an svertex in a sphere map; it remains to link one
svertex with the corresponding opposite svertex in the other sphere map.

Edge uses: An edge can have many incident facets (non-manifold situation). We introduce two oppositely oriented
edge-uses for each incident facet; one for each orientation of the facet. An edge-use points to its corre-
sponding oriented edge and to its oriented facet. We can identify an edge-use with an oriented sedge in the
sphere map, or, in the special case also with an sloop. Without mentioning it explicitly in the remainder, all
references to an sedge can also refer to an sloop.

Facets: We store oriented facets as boundary cycles of oriented edge-uses. We have a distinguished outer boundary
cycle and several (or maybe none) inner boundary cycles representing holes in the facet. Boundary cycles are
linked in one direction. We can access the other traversal direction when we switch to the oppositely oriented
facet, i.e., by using the opposite edge-use.

Hachenberger et al. (2006)
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Fig. 7. An SNC. We show only one facet with four vertices, the sphere maps of two of the vertices, the connecting edges, and both oriented facets.
Shells and volumes are omitted for this example.

Shells: A volume boundary decomposes into different connected components, the shells. They consist of a connected
set of facets, edges, and vertices incident to this volume. Facets around an edge form a radial order that is
captured in the radial order of sedges around an svertex in the sphere map. Using this information, we can
trace a shell from one entry element with a graph search. We offer this graph traversal in a visitor design
pattern to the user.

Volumes: A volume is defined by a set of shells, one outer shell containing the volume and several (or maybe none)
inner shells excluding voids from the volume. We store an arbitrary sface of each shell as an entry point for
the graph traversal.

For each face we store a label, e.g., a set-selection mark, which indicates whether the face is part of the solid or if
it is excluded. We call the resulting data structure selective Nef complex, SNC for short.

3.3. Bounding Nef polyhedra

In this section, we present a reduction to bounded polyhedra. Applying the reduction, all minimal elements of the
incidence structure are vertices. Hence, representing the local pyramids of all vertices by a sphere map becomes a
sufficient representation of unbounded Nef polyhedra, too.

We extend infimaximal frames [32] already used for planar Nef polygons [39,40]. The infimaximal box is a bound-
ing volume of size [−R,+R]3 where R represents a sufficiently large value to enclose all vertices of the polyhedron.
The value of R is left unspecified as an infimaximal number, i.e., a number that is finite but larger than the value of
any concrete real number. In [32] it is argued that interpreting R as an infimaximal number instead of setting it to a
large concrete number has several advantages, in particular increased efficiency and convenience.

Clipping lines and rays at this infimaximal box leads to points on the box that we call frame points or non-standard
points (compared to the regular standard points inside the box). The coordinates of such points are R or −R for one
coordinate axis, and linear functions f (R) for the other coordinates. We use linear polynomials over R as coordinate
representation for standard points as well as for non-standard points, thus unifying the two kind of points in one
representation, the extended points. In Lemma 6, we show that this representation is always sufficient, even in iterated
constructions. For better readability of this section, we moved Lemma 6 into Appendix A.

Analogous to extended points, we can define extended segments and extended planes as the unified representation
of standard and non-standard segments or planes, respectively. Note that lines clipped at the infimaximal box become

Hachenberger et al. (2006)



Operations on local pyramids

1. subdivision: compute overlay -> new local pyramids 

2. selection: perform operation on local pyramids 

3. simplification: remove unnecessary local pyramids
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What to do next?

1. Today: 

• Continue with Homework 2 (generalisation of a 3D city model) 

• Go to geo1004 website and study today’s lesson (3D book Chapter 5) 

2. Wednesday: BIM demos and intro to Homework 3, then help with lessons or 
Homework 2 

3. Thursday: help session with me



https://3d.bk.tudelft.nl/courses/geo1004 

https://3d.bk.tudelft.nl/courses/geo1004
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