
GEO1004:
3D modelling of the built environment

https://3d.bk.tudelft.nl/courses/geo1004

Applications of 3D modelling of the built environment

ISPRS Int. J. Geo-Inf. 2015, 4 2843

1. Introduction

A 3D city model is a representation of an urban environment with a three-dimensional geometry of
common urban objects and structures, with buildings as the most prominent feature [1–4]. A typical
3D city model is derived from various acquisition techniques, for instance, photogrammetry and laser
scanning [5–8], extrusion from 2D footprints [9,10], synthetic aperture radar [11–15], architectural
models and drawings [16–18], handheld devices [19,20], procedural modelling [21–26], and volunteered
geoinformation [27–29]. Seemingly, visualisation dominated the early uses of 3D city models. However,
as the technology developed, 3D city models have become valuable for several purposes beyond
visualisation, and are utilised in a large number of domains [30–35] (Figure 1). Such diversity and
the increasing number of applications render it difficult to keep track of the utilisation possibilities of
3D city models. It appears that, despite the near-ubiquitousness of 3D city models, a comprehensive
inventory of 3D applications does not exist (examples of previous efforts are presented in Section 2).
Because each 3D application requires its own specific 3D data, a comprehensive inventory can help
linking the requirements to specific applications. Contributing to these efforts, as we do in this paper,
helps identifying the requirements emerging across domains to generate 3D data that is fit-for-purpose.
Such an inventory also provides a reference for user testing, thus contributes to identifying the eventual
understanding of the models’ fitness-for-use.

Figure 1. 3D city models may be applied in a multitude of application domains for
environmental simulations and decision support.

In Section 3 we present the methodology of our survey, and discuss barriers we encountered. It is
important to note that throughout this manuscript, we focus on the state of the art regarding the utilisation
of 3D city models; however, we also use the terms 3D GIS and 3D geoinformation when the context

2

3

4

5

6

Other applications

• Visualisation (eg for gaming, tourism, navigation, etc)

• Energy demand estimation (and potential for retrofitting)

• Computational fluid dynamics (eg for wind speeds, air quality, effects on buildings, etc)

• Shadow casting (eg for building permits, visibility analysis, improving energy demand/
solar potential calculations, etc)

7

Applications based on visualisation?

8

Some MSc Geomatics theses

9

• Motivation: create (rough) indoor
geometry from widely available outdoor
geometry

• Definition of a CityGML LOD2 with
interiors (LOD2+)

• Compute interior geometry from
exterior geometry + number of storeys

• Compute net internal area

10

Department of GIS Technology, OTB Research Institute for the Built Environment

MSc thesis in Geomatics

Automatic enhancement of CityGML LoD2 models
with interiors and its usability for net internal area
determination

Roeland Boeters

Ju
ne

 2
01

3

LOD2+

5BCMF �� %FȍOJUJPO PG UIF -0%�� NPEFM CZ FYUFOEJOH DPNQBSBCMF DPODFQUT GSPN UIF
-0%��

&YUFSJPS JO -0%� *OUFSJPS JO -0%��

#VJMEJOHT CPEJFT BSF QSJTNT 4UPSFZT XJUIJO CVJMEJOH CPEJFT BSF QSJTNT
4JNQMF SPPG TIBQFT "͊JD TUPSFZ TIBQFT DPSSFTQPOEJOH UP SPPG TIBQFT
5IFNBUJDBMMZ DMBTTJȍFE CPVOEBSZ TVSGBDFT 5IFNBUJDBMMZ DMBTTJȍFE CPVOEBSZ TVSGBDFT
/P PQFOJOHT JO UIF FYUFSJPS HFPNFUSZ /P PQFOJOHT JO UIF JOEPPS HFPNFUSZ

'JHVSF �� 5IF -0%�� NPEFM 	TIPXO PO UIF SJHIU
 JT EFȍOFE BT UIF FYUFOTJPO PG UIF -0%�
NPEFM 	MFȈ
 XJUI BO DPSSFTQPOEJOH JOEPPS MFWFM PG EFUBJM 	NJEEMF
� 'PS -0%��
NPEFM WPMVNFT BSF ȍU JOTJEF UIF FYUFSJPS TIFMM XIJDI SFQSFTFOU TUPSFZT� 5IF
TUPSFZT CFJOH TJNQMF DBO CF BVUPNBUJDBMMZ EFUFSNJOFE GSPN UIF FYUFSJPS DIBS�
BDUFSJTUJDT PG UIF -0%� NPEFM VTJOH UIF NFUIPEPMPHZ EFTDSJCFE JO 4FDUJPO ��

5IF WBMJEBUJPO JT QFSGPSNFE XJUI $JUZ %PD�
UPS <8BHOFS FU BM� ����> XIJMF UIF HFPNFU�
SJD DPNQVUBUJPOT VTF UIF $PNQVUBUJPOBM
(FPNFUSZ "MHPSJUINT -JCSBSZ 	$("-
�s
NBJOMZ UIF /FG QPMZIFESB <#JFSJ BOE /FG
����> QBDLBHF� "ȈFS UIF -0%�� WPMVNFT
IBWF CFFO PCUBJOFE JOEJWJEVBM GBDFT BSF
FYUSBDUFE GSPN UIF /FG QPMZIFESB BOE UIF
DPSSFDU TFNBOUJD JOGPSNBUJPO GPS B 	C�SFQ

-0%�� NPEFM JT PCUBJOFE CZ DMBTTJGZJOH
UIFTF GBDFT� 5IFTF TUFQT BSF EFTDSJCFE JO EF�
UBJM JO UIF GPMMPXJOH TFDUJPOT�

��� 3FQBJSJOH UIF CVJMEJOH
HFPNFUSJFT JO UIF JOQVU -0%�
EBUB

5IF HFPNFUSJFT UIBU BSF TUPSFE JO UIF
$JUZ(.- GPSNBU BSF TVQQPTFE UP DPOGPSN
UP UIF *40 ����� EFȍOJUJPOT <*40 ����>
GPS QPMZHPOT 	BT �+`&��	 BOE �+`(
�3	
�

����CUU���>�	��>
�	

BOE QPMZIFESB 	BT �+`���� BOE �+`�
���

XIJDI TIPVME FOTVSF UIBU UIFTF GPSN
WBMJE �% BOE �% PCKFDUT <-FEPVY ����>�
.BJOMZ B QPMZHPO TIPVME CF DMPTFE 	m<"
(.@3JOH> DPOTJTUT PG B OVNCFS PG SFGFSFODFT
UP (.@0SJFOUBCMF$VSWFT DPOOFDUFE JO B ƌ�
DMFn
 BOE OPO�TFMG�JOUFSTFDUJOH 	mFBDI SJOH
JT TJNQMFn
� 4JNJMBSMZ B QPMZIFESPO TIPVME
CF DMPTFE 	m<" (.@4IFMM> DPOTJTUT PG B OVN�
CFS PG SFGFSFODFT UP (.@0SJFOUBCMF4VSGBDFT
DPOOFDUFE JO B UPQPMPHJDBM ƌDMFn
 BOE OPO�TFMG�
JOUFSTFDUJOH 	m(.@4IFMMT BSF TJNQMFn
� 5IF
TUBOEBSE BMTP NBLFT JU QPTTJCMF UP TQFDJGZ
PUIFS QSBDUJDBM SFRVJSFNFOUT TVDI BT B
QPMZHPO CFJOH QMBOBS 	mŊF EFGBVMU <TVSGBDF
JO XIJDI UP FNCFE B QPMZHPO> JT UIBU <UIF SJOHT
PG B QPMZHPO> BSF DPQMBOBSn
�

)PXFWFS UIF WBMJEJUZ DSJUFSJB BSF EJȋDVMU
UP FOGPSDF� #FDBVTF PG UIJT JOWBMJE HFPNF�
USJFT JO $JUZ(.- NPEFMT BSF QSFWBMFOU JO
QSBDUJDF TVDI BT CVJMEJOHT XJUI NJTTJOH
GBDFT 	XIJDI UIFSFGPSF EP OPU FODMPTF BOZ
TQBDF
� "T UIF DSFBUJPO PG /FG QPMZIFESB 	PS
BOZ PUIFS WPMVNFUSJD SFQSFTFOUBUJPO
 GSPN

�

Exterior in LOD2 Interior in LOD2+

Buildings bodies are prisms Storeys within building bodies are prisms
Simple roof shapes A!ic storey shapes corresponding to roof shapes
Thematically classified boundary surfaces Thematically classified boundary surfaces
No openings in the exterior geometry No openings in the indoor geometry

11

Indication of storeys

12

5.2 generation rules and data input 61

(a) The highest storey starts approxi-
mately at the eaves of the roof.

(b) The highest storey starts approxi-
mately at the eaves of the roof (if
not taking into account roof over-
hang).

Figure 37: Two buildings where the highest storey starts at the eaves of the
roof. Figures taken from BAG Rotterdam.

Figure 38: The height of the extension of a house may be an indicator for
the height at which a new storey starts. Figure taken from BAG
Rotterdam.

5.2.2 Parametrized solid erosion

The intersection procedure described in the previous section produces
in fact LoD1+ storey solids (that is, if no roofs were modelled for
the buildings) because geometrically no interior features are mod-
elled. For LoD2+ also interior walls, floor surfaces and ceiling surfaces
should be modelled. To do this an offset must be applied to the shell
of each solid.

To determine the correct thickness offset, the faces of the solid need
to be classified (see Section 5.2.3) and furthermore for each classified
surface a thickness must be set (see Section 5.2.4).

As discussed in Section 4.3, in this research the Minkowski sum
(Hachenberger, 2007) is used (see Section 3.6) to produce an offset to
the exterior shell. Two steps are required for this:

	B

5.2 generation rules and data input 61

(a) The highest storey starts approxi-
mately at the eaves of the roof.

(b) The highest storey starts approxi-
mately at the eaves of the roof (if
not taking into account roof over-
hang).

Figure 37: Two buildings where the highest storey starts at the eaves of the
roof. Figures taken from BAG Rotterdam.

Figure 38: The height of the extension of a house may be an indicator for
the height at which a new storey starts. Figure taken from BAG
Rotterdam.

5.2.2 Parametrized solid erosion

The intersection procedure described in the previous section produces
in fact LoD1+ storey solids (that is, if no roofs were modelled for
the buildings) because geometrically no interior features are mod-
elled. For LoD2+ also interior walls, floor surfaces and ceiling surfaces
should be modelled. To do this an offset must be applied to the shell
of each solid.

To determine the correct thickness offset, the faces of the solid need
to be classified (see Section 5.2.3) and furthermore for each classified
surface a thickness must be set (see Section 5.2.4).

As discussed in Section 4.3, in this research the Minkowski sum
(Hachenberger, 2007) is used (see Section 3.6) to produce an offset to
the exterior shell. Two steps are required for this:

	C

'JHVSF �� 5XP EJȊFSFOU CVJMEJOHT XIFSF UIF IJHIFTU TUPSFZ TUBSUT BU UIF FBWFT PG UIF SPPG�
5BLFO GSPN #"(3P͊FSEBN�

5.2 generation rules and data input 61

(a) The highest storey starts approxi-
mately at the eaves of the roof.

(b) The highest storey starts approxi-
mately at the eaves of the roof (if
not taking into account roof over-
hang).

Figure 37: Two buildings where the highest storey starts at the eaves of the
roof. Figures taken from BAG Rotterdam.

Figure 38: The height of the extension of a house may be an indicator for
the height at which a new storey starts. Figure taken from BAG
Rotterdam.

5.2.2 Parametrized solid erosion

The intersection procedure described in the previous section produces
in fact LoD1+ storey solids (that is, if no roofs were modelled for
the buildings) because geometrically no interior features are mod-
elled. For LoD2+ also interior walls, floor surfaces and ceiling surfaces
should be modelled. To do this an offset must be applied to the shell
of each solid.

To determine the correct thickness offset, the faces of the solid need
to be classified (see Section 5.2.3) and furthermore for each classified
surface a thickness must be set (see Section 5.2.4).

As discussed in Section 4.3, in this research the Minkowski sum
(Hachenberger, 2007) is used (see Section 3.6) to produce an offset to
the exterior shell. Two steps are required for this:

	B

5.3 model results and validity 77

Figure 49: LoD2+ result for a small part of Hoogvliet-Zuid. The exterior shell
is transparent such that the storey solids are visible.

storey using the snapping operation works out usually well (for ex-
ample see Figure 50), however is depending on the tolerance used. An
example is shown in Figure 51. Two buildings in this row of houses
are not snapped to the eaves of the roof, because the distance between
the initial height and the characteristic height is somewhat larger than
the tolerance while this is not the case for the other buildings. A larger
tolerance may solve this problem, but may introduce others. For ex-
ample the attic storey height may become too small if splitting the
building at the eaves of the roof if the distance between the initial
height and the characteristic height is too large.

Figure 50: Using the storey height snapping algorithm the storeys are
aligned with lower roof elements which would otherwise not be
the case.

	C

'JHVSF �� 5XP EJȊFSFOU CVJMEJOHT XIFSF UIF IFJHIU PG BO FYUFOTJPO JOEJDBUFT UIF IFJHIU PG
B TUPSFZ� #MVFQSJOU 	B
 UBLFO GSPN #"(3P͊FSEBN�

��

Indication of storeys

13

5.2 generation rules and data input 61

(a) The highest storey starts approxi-
mately at the eaves of the roof.

(b) The highest storey starts approxi-
mately at the eaves of the roof (if
not taking into account roof over-
hang).

Figure 37: Two buildings where the highest storey starts at the eaves of the
roof. Figures taken from BAG Rotterdam.

Figure 38: The height of the extension of a house may be an indicator for
the height at which a new storey starts. Figure taken from BAG
Rotterdam.

5.2.2 Parametrized solid erosion

The intersection procedure described in the previous section produces
in fact LoD1+ storey solids (that is, if no roofs were modelled for
the buildings) because geometrically no interior features are mod-
elled. For LoD2+ also interior walls, floor surfaces and ceiling surfaces
should be modelled. To do this an offset must be applied to the shell
of each solid.

To determine the correct thickness offset, the faces of the solid need
to be classified (see Section 5.2.3) and furthermore for each classified
surface a thickness must be set (see Section 5.2.4).

As discussed in Section 4.3, in this research the Minkowski sum
(Hachenberger, 2007) is used (see Section 3.6) to produce an offset to
the exterior shell. Two steps are required for this:

	B

5.2 generation rules and data input 61

(a) The highest storey starts approxi-
mately at the eaves of the roof.

(b) The highest storey starts approxi-
mately at the eaves of the roof (if
not taking into account roof over-
hang).

Figure 37: Two buildings where the highest storey starts at the eaves of the
roof. Figures taken from BAG Rotterdam.

Figure 38: The height of the extension of a house may be an indicator for
the height at which a new storey starts. Figure taken from BAG
Rotterdam.

5.2.2 Parametrized solid erosion

The intersection procedure described in the previous section produces
in fact LoD1+ storey solids (that is, if no roofs were modelled for
the buildings) because geometrically no interior features are mod-
elled. For LoD2+ also interior walls, floor surfaces and ceiling surfaces
should be modelled. To do this an offset must be applied to the shell
of each solid.

To determine the correct thickness offset, the faces of the solid need
to be classified (see Section 5.2.3) and furthermore for each classified
surface a thickness must be set (see Section 5.2.4).

As discussed in Section 4.3, in this research the Minkowski sum
(Hachenberger, 2007) is used (see Section 3.6) to produce an offset to
the exterior shell. Two steps are required for this:

	C

'JHVSF �� 5XP EJȊFSFOU CVJMEJOHT XIFSF UIF IJHIFTU TUPSFZ TUBSUT BU UIF FBWFT PG UIF SPPG�
5BLFO GSPN #"(3P͊FSEBN�

5.2 generation rules and data input 61

(a) The highest storey starts approxi-
mately at the eaves of the roof.

(b) The highest storey starts approxi-
mately at the eaves of the roof (if
not taking into account roof over-
hang).

Figure 37: Two buildings where the highest storey starts at the eaves of the
roof. Figures taken from BAG Rotterdam.

Figure 38: The height of the extension of a house may be an indicator for
the height at which a new storey starts. Figure taken from BAG
Rotterdam.

5.2.2 Parametrized solid erosion

The intersection procedure described in the previous section produces
in fact LoD1+ storey solids (that is, if no roofs were modelled for
the buildings) because geometrically no interior features are mod-
elled. For LoD2+ also interior walls, floor surfaces and ceiling surfaces
should be modelled. To do this an offset must be applied to the shell
of each solid.

To determine the correct thickness offset, the faces of the solid need
to be classified (see Section 5.2.3) and furthermore for each classified
surface a thickness must be set (see Section 5.2.4).

As discussed in Section 4.3, in this research the Minkowski sum
(Hachenberger, 2007) is used (see Section 3.6) to produce an offset to
the exterior shell. Two steps are required for this:

	B

5.3 model results and validity 77

Figure 49: LoD2+ result for a small part of Hoogvliet-Zuid. The exterior shell
is transparent such that the storey solids are visible.

storey using the snapping operation works out usually well (for ex-
ample see Figure 50), however is depending on the tolerance used. An
example is shown in Figure 51. Two buildings in this row of houses
are not snapped to the eaves of the roof, because the distance between
the initial height and the characteristic height is somewhat larger than
the tolerance while this is not the case for the other buildings. A larger
tolerance may solve this problem, but may introduce others. For ex-
ample the attic storey height may become too small if splitting the
building at the eaves of the roof if the distance between the initial
height and the characteristic height is too large.

Figure 50: Using the storey height snapping algorithm the storeys are
aligned with lower roof elements which would otherwise not be
the case.

	C

'JHVSF �� 5XP EJȊFSFOU CVJMEJOHT XIFSF UIF IFJHIU PG BO FYUFOTJPO JOEJDBUFT UIF IFJHIU PG
B TUPSFZ� #MVFQSJOU 	B
 UBLFO GSPN #"(3P͊FSEBN�

��

Wall thickness

14

Type year ! storeys " #ext [cm] #shared [cm]
Non-stacked ! < 1970 " ≤ 2 27 11" ≥ 3 27 121970 ≤ ! ≤ 1985 " = 2 27 10" = 3 28 12" = 4 27 9! > 1985 " = 2 28 13" = 3 30 12" = 4 25 12
Stacked ! < 1970 " ≤ 5 29 125 < " ≤ 10 38 11" > 10 25 91970 ≤ ! ≤ 1985 " ≤ 5 28 115 < " ≤ 10 26 11" > 10 29 12! > 1985 " ≤ 5 30 125 < " ≤ 10 38 13" > 10 35 15

Other types ! < 1970 " = 1 14 14" ≥ 2 31 111970 ≤ ! ≤ 1985 " = 1 14 14" ≥ 2 30 10! > 1985 " = 1 14 14" ≥ 2 36 13

Boolean set intersection

15

60 generation of lod2+

Figure 36: Intersection operations may produce multiple disjoint solids.
These volumes need to be handled separately so that in the out-
put each individual solid can be identified.

of the roof polygons of which the normal vector is under an angle
smaller than 80° or larger than 100°, thereby excluding flat roof parts.
The building extension heights are extracted by comparing the height
of the flat roof with the maximum building height. When there is a
significant difference, this height is marked as characteristic height as
well.

Since the initial assumption is that each storey has the same height,
the roof thickness is subtracted from the total height of the build-
ing. Subsequently the total height can be divided by the amount of
storeys, to obtain the heights at which the building must be split.
Each initial height can be compared to the characteristic heights. A
snapping tolerance is implemented, such that each splitting height is
snapped to the characteristic height whenever the distance is smaller
than a defined value (0.5m is used here). Afterwards the lower and
higher floors are redistributed (starting from the last snapped floor
such that previously snapped floors are not changed). This process is
done from lower to higher storeys.

Due to the fact that it is not known what the quality is of the reg-
istered number of storeys in BAG, an additional check may be imple-
mented. For normal houses, based on experience, it is very unlikely
that the storey height is smaller than ⇠2.3m including floor and ceil-
ing thickness. Furthermore it is unlikely that the storey height for this
building type is larger than ⇠4.0m.

'JHVSF �� " TFU JOUFSTFDUJPO PQFSBUJPO JT
VTFE UP PCUBJO FBDI TUPSFZ PG B
CVJMEJOH� /PUF UIBU UIF PVUQVU PG
UIJT PQFSBUJPONJHIU QSPEVDFNVM�
UJQMF EJTKPJOU QPMZIFESB�

62 generation of lod2+

1. Buffering each face of a solid using the Minkowski sum

2. Subtracting each buffered face from the original solid (set dif-
ference Boolean operation)

This robot can have different shapes. If an exact buffer is required in
all directions, the robot should be a sphere where the radius equals
the desired offset. Unfortunately the Minkowski sum is an expen-
sive operation and runs in O(n3

m
3) where n and m are the sum

of vertices, halfedges and shalfedges of polyhedron 1 and polyhe-
dron 2 respectively (Hachenberger, 2007). A quick performance test
shows that Minkowski sum of a triangular face with an approximated
sphere (with 80 triangular facets and 42 vertices) takes about 2-3 times
longer than Minkowski sum with a cube whereas the accuracy in the
perpendicular offset is then still limited. Therefore a cube is chosen
as robot, which is expected to be good enough as the walls of most
buildings are perpendicular to each other.

The Minkowski sum is the vector sum of the point sets of both
polyhedra. Therefore when using a cube for applying the offset, a
rotation should be applied. This is illustrated for a 2-dimensional case
in Figure 39. The offset to the line is not the same for both cases. A
rotation thus needs to be applied, such that the square is aligned with
the edge. Furthermore the robot must be scaled, such that the radius
of an inscribed sphere equals the desired offset.

(a) Minkowski sum of a square with a line results in the wrong offset of the line.

(b) Minkowski sum of a rotated square with a line results in the correct offset of the
line.

Figure 39: Difference between Minkowski sum with and without a rotation
applied to the robot.

In three dimensions, i.e. the Minkowski sum of a cube with a face,
two rotations about two axes are required to align the two polyhedra.

'JHVSF �� 5IF .JOLPXTLJ TVN PG B SPUBUFE
TRVBSF LFSOFM XJUI B MJOF SFTVMUT JO
B DPSSFDUMZ PSJFOUFE MJOF XJUI UIF
UIJDLOFTT PG UIF LFSOFM�

JT DMBTTJȍFE JOUP JUT QFSUBJOJOH $JUZ(.-
DMBTT� ������	������� /�����
�"������E
���� PS ��

��������� 4JNJMBSMZ FBDI GBDF
PG UIF SFQBJSFE JOQVU WPMVNF SFQSFTFOUJOH
UIF FYUFSJPS PG UIF CVJMEJOH JT DMBTTJȍFE
BT &

�������� "���������� PS ��

����E
����� 5IJT JT EPOF VTJOH B TJNQMF NFUIPE
UIBU DPNQVUFT UIJT CBTFE PO UIF OPSNBM WFD�
UPS PG FBDI GBDF BT TIPXO JO 'JHVSF � XIJDI
OFWFSUIFMFTT ZJFMET B DPSSFDU DMBTTJȍDBUJPO
JO BMNPTU FWFSZ DBTF�

� $SFBUJPO PG -0%��NPEFMT
GSPN3PʘFSEBN �%

8F IBWF VTFE UIF NFUIPEPMPHZ EFTDSJCFE
JO UIF QSFWJPVT TFDUJPO JO PSEFS UP HFO�
FSBUF -0%�� NPEFMT GSPN B TVCTFU PG
UIF $JUZ(.- -0%� EBUBTFU 3P͊FSEBN �%��
����CUU���>�
�������>��U�
�������`6�

5.2 generation rules and data input 67

Figure 43: Classification of the surface is done on the basis of the pitch angle
of the normal vector of each face. The angles in the figure show
which angle results in which surface type.

wall. Each point of the wall is projected on the xy-plane and conse-
quently the distance between each of points and the lines belonging
to shared walls of the BAG premises is computed. When all three
points are within a certain distance from the line, it is classified as
shared wall. The snap-rounding tolerance is set to 0.01m to account
for differences in accuracy. Now the desired offset can be applied for
shared walls.

'JHVSF �� $MBTTJȍDBUJPO PG UIF TVSGBDF JT
EPOF PO UIF CBTJT PG UIF QJUDI BO�
HMF PG UIF OPSNBM WFDUPS PG FBDI
GBDF� 5IF BOHMFT JO UIF ȍHVSF TIPX
XIJDI BOHMF SFTVMUT JO XIJDI TVS�
GBDF UZQF�

5IFTF XFSF WBMJEBUFE CZ WJTVBMMZ JOTQFDUJOH
B TBNQMF PG UIF SFTVMUJOH NPEFMT DPNQBS�
JOH UIFN XJUI CVJMEJOH CMVFQSJOUT TUSFFU�
MFWFM JNBHFSZ GSPN (PPHMF 4USFFU 7JFX BOE
PCMJRVF BFSJBM WJFXT GSPN #JOH .BQT�

3P͊FSEBN �% JT UIF UISFF�EJNFOTJPOBM
NPEFM PG UIF DJUZ PG 3P͊FSEBN DSFBUFE PO
UIF CBTJT PG CVJMEJOH GPPUQSJOUT GSPN UIF #B�
TJTSFHJTUSBUJF "ESFTTFO FO (FCPVXFO 	#"(s
,FZ 3FHJTUFS GPS "EESFTTFT BOE #VJMEJOHT
�
EBUBTFU BOE QPJOU DMPVE EBUB XJUI B QPJOU
EFOTJUZ PG BU MFBTU �� QPJOUT QFS Nଓ JO UIF
IBSCPVS BSFB PG 3P͊FSEBN BOE BU MFBTU ��
QPJOUT QFS Nଓ FMTFXIFSF� 'PS UIJT VTF DBTF
XF IBWF VTFE B TVCTFU PG 3P͊FSEBN �% DPO�
TJTUJOH PG UIF BSFB PG)PPHWMJFU�;VJE XIJDI
JT TIPXO JO 'JHVSF ��� *U JT UIF TPVUIFSO QBSU
PG B CPSPVHI JO UIF TPVUIXFTU PG 3P͊FSEBN�
5IJT BSFB IBT CFFO TFMFDUFE BT JU IBT WBS�
JFE CVJMEJOH UZQFT TVDI BT� UFSSBDFE IPVTFT
șBUT IJHI�SJTFT BOE EFUBDIFE IPVTFT� *U BMTP
IBT CVJMEJOHT XJUI B TJHOJȍDBOU EJȊFSFODF
JO UIFJS DPOTUSVDUJPO EBUF EVF UP SFDFOU VS�
CBO SFOFXBM JO UIF CPSPVHI� &BDI CVJME�
JOH IBT BO JEFOUJȍFS UIBU MJOLT UIF CVJMEJOHT
����CUU���>��������>��U��	

��

Classifying surfaces

16

60 generation of lod2+

Figure 36: Intersection operations may produce multiple disjoint solids.
These volumes need to be handled separately so that in the out-
put each individual solid can be identified.

of the roof polygons of which the normal vector is under an angle
smaller than 80° or larger than 100°, thereby excluding flat roof parts.
The building extension heights are extracted by comparing the height
of the flat roof with the maximum building height. When there is a
significant difference, this height is marked as characteristic height as
well.

Since the initial assumption is that each storey has the same height,
the roof thickness is subtracted from the total height of the build-
ing. Subsequently the total height can be divided by the amount of
storeys, to obtain the heights at which the building must be split.
Each initial height can be compared to the characteristic heights. A
snapping tolerance is implemented, such that each splitting height is
snapped to the characteristic height whenever the distance is smaller
than a defined value (0.5m is used here). Afterwards the lower and
higher floors are redistributed (starting from the last snapped floor
such that previously snapped floors are not changed). This process is
done from lower to higher storeys.

Due to the fact that it is not known what the quality is of the reg-
istered number of storeys in BAG, an additional check may be imple-
mented. For normal houses, based on experience, it is very unlikely
that the storey height is smaller than ⇠2.3m including floor and ceil-
ing thickness. Furthermore it is unlikely that the storey height for this
building type is larger than ⇠4.0m.

'JHVSF �� " TFU JOUFSTFDUJPO PQFSBUJPO JT
VTFE UP PCUBJO FBDI TUPSFZ PG B
CVJMEJOH� /PUF UIBU UIF PVUQVU PG
UIJT PQFSBUJPONJHIU QSPEVDFNVM�
UJQMF EJTKPJOU QPMZIFESB�

62 generation of lod2+

1. Buffering each face of a solid using the Minkowski sum

2. Subtracting each buffered face from the original solid (set dif-
ference Boolean operation)

This robot can have different shapes. If an exact buffer is required in
all directions, the robot should be a sphere where the radius equals
the desired offset. Unfortunately the Minkowski sum is an expen-
sive operation and runs in O(n3

m
3) where n and m are the sum

of vertices, halfedges and shalfedges of polyhedron 1 and polyhe-
dron 2 respectively (Hachenberger, 2007). A quick performance test
shows that Minkowski sum of a triangular face with an approximated
sphere (with 80 triangular facets and 42 vertices) takes about 2-3 times
longer than Minkowski sum with a cube whereas the accuracy in the
perpendicular offset is then still limited. Therefore a cube is chosen
as robot, which is expected to be good enough as the walls of most
buildings are perpendicular to each other.

The Minkowski sum is the vector sum of the point sets of both
polyhedra. Therefore when using a cube for applying the offset, a
rotation should be applied. This is illustrated for a 2-dimensional case
in Figure 39. The offset to the line is not the same for both cases. A
rotation thus needs to be applied, such that the square is aligned with
the edge. Furthermore the robot must be scaled, such that the radius
of an inscribed sphere equals the desired offset.

(a) Minkowski sum of a square with a line results in the wrong offset of the line.

(b) Minkowski sum of a rotated square with a line results in the correct offset of the
line.

Figure 39: Difference between Minkowski sum with and without a rotation
applied to the robot.

In three dimensions, i.e. the Minkowski sum of a cube with a face,
two rotations about two axes are required to align the two polyhedra.

'JHVSF �� 5IF .JOLPXTLJ TVN PG B SPUBUFE
TRVBSF LFSOFM XJUI B MJOF SFTVMUT JO
B DPSSFDUMZ PSJFOUFE MJOF XJUI UIF
UIJDLOFTT PG UIF LFSOFM�

JT DMBTTJȍFE JOUP JUT QFSUBJOJOH $JUZ(.-
DMBTT� ������	������� /�����
�"������E
���� PS ��

��������� 4JNJMBSMZ FBDI GBDF
PG UIF SFQBJSFE JOQVU WPMVNF SFQSFTFOUJOH
UIF FYUFSJPS PG UIF CVJMEJOH JT DMBTTJȍFE
BT &

�������� "���������� PS ��

����E
����� 5IJT JT EPOF VTJOH B TJNQMF NFUIPE
UIBU DPNQVUFT UIJT CBTFE PO UIF OPSNBM WFD�
UPS PG FBDI GBDF BT TIPXO JO 'JHVSF � XIJDI
OFWFSUIFMFTT ZJFMET B DPSSFDU DMBTTJȍDBUJPO
JO BMNPTU FWFSZ DBTF�

� $SFBUJPO PG -0%��NPEFMT
GSPN3PʘFSEBN �%

8F IBWF VTFE UIF NFUIPEPMPHZ EFTDSJCFE
JO UIF QSFWJPVT TFDUJPO JO PSEFS UP HFO�
FSBUF -0%�� NPEFMT GSPN B TVCTFU PG
UIF $JUZ(.- -0%� EBUBTFU 3P͊FSEBN �%��
����CUU���>�
�������>��U�
�������`6�

5.2 generation rules and data input 67

Figure 43: Classification of the surface is done on the basis of the pitch angle
of the normal vector of each face. The angles in the figure show
which angle results in which surface type.

wall. Each point of the wall is projected on the xy-plane and conse-
quently the distance between each of points and the lines belonging
to shared walls of the BAG premises is computed. When all three
points are within a certain distance from the line, it is classified as
shared wall. The snap-rounding tolerance is set to 0.01m to account
for differences in accuracy. Now the desired offset can be applied for
shared walls.

'JHVSF �� $MBTTJȍDBUJPO PG UIF TVSGBDF JT
EPOF PO UIF CBTJT PG UIF QJUDI BO�
HMF PG UIF OPSNBM WFDUPS PG FBDI
GBDF� 5IF BOHMFT JO UIF ȍHVSF TIPX
XIJDI BOHMF SFTVMUT JO XIJDI TVS�
GBDF UZQF�

5IFTF XFSF WBMJEBUFE CZ WJTVBMMZ JOTQFDUJOH
B TBNQMF PG UIF SFTVMUJOH NPEFMT DPNQBS�
JOH UIFN XJUI CVJMEJOH CMVFQSJOUT TUSFFU�
MFWFM JNBHFSZ GSPN (PPHMF 4USFFU 7JFX BOE
PCMJRVF BFSJBM WJFXT GSPN #JOH .BQT�

3P͊FSEBN �% JT UIF UISFF�EJNFOTJPOBM
NPEFM PG UIF DJUZ PG 3P͊FSEBN DSFBUFE PO
UIF CBTJT PG CVJMEJOH GPPUQSJOUT GSPN UIF #B�
TJTSFHJTUSBUJF "ESFTTFO FO (FCPVXFO 	#"(s
,FZ 3FHJTUFS GPS "EESFTTFT BOE #VJMEJOHT
�
EBUBTFU BOE QPJOU DMPVE EBUB XJUI B QPJOU
EFOTJUZ PG BU MFBTU �� QPJOUT QFS Nଓ JO UIF
IBSCPVS BSFB PG 3P͊FSEBN BOE BU MFBTU ��
QPJOUT QFS Nଓ FMTFXIFSF� 'PS UIJT VTF DBTF
XF IBWF VTFE B TVCTFU PG 3P͊FSEBN �% DPO�
TJTUJOH PG UIF BSFB PG)PPHWMJFU�;VJE XIJDI
JT TIPXO JO 'JHVSF ��� *U JT UIF TPVUIFSO QBSU
PG B CPSPVHI JO UIF TPVUIXFTU PG 3P͊FSEBN�
5IJT BSFB IBT CFFO TFMFDUFE BT JU IBT WBS�
JFE CVJMEJOH UZQFT TVDI BT� UFSSBDFE IPVTFT
șBUT IJHI�SJTFT BOE EFUBDIFE IPVTFT� *U BMTP
IBT CVJMEJOHT XJUI B TJHOJȍDBOU EJȊFSFODF
JO UIFJS DPOTUSVDUJPO EBUF EVF UP SFDFOU VS�
CBO SFOFXBM JO UIF CPSPVHI� &BDI CVJME�
JOH IBT BO JEFOUJȍFS UIBU MJOLT UIF CVJMEJOHT
����CUU���>��������>��U��	

��

Results

17

5.3 model results and validity 77

Figure 49: LoD2+ result for a small part of Hoogvliet-Zuid. The exterior shell
is transparent such that the storey solids are visible.

storey using the snapping operation works out usually well (for ex-
ample see Figure 50), however is depending on the tolerance used. An
example is shown in Figure 51. Two buildings in this row of houses
are not snapped to the eaves of the roof, because the distance between
the initial height and the characteristic height is somewhat larger than
the tolerance while this is not the case for the other buildings. A larger
tolerance may solve this problem, but may introduce others. For ex-
ample the attic storey height may become too small if splitting the
building at the eaves of the roof if the distance between the initial
height and the characteristic height is too large.

Figure 50: Using the storey height snapping algorithm the storeys are
aligned with lower roof elements which would otherwise not be
the case.

	B
 	C

'JHVSF ��� -0%��NPEFMT GPS WBSJPVT HBCMFE IPVTFT� 5IF FYUFSJPS TIFMM JT USBOTQBSFOU TVDI
UIBU UIF TUPSFZ TPMJET BSF WJTJCMF�

	B
 	C

'JHVSF ��� $PNQBSJTPO CFUXFFO� 	B
 B HFOFSBUFE -0%�� NPEFM BOE 	C
 UIF CVJMEJOH GSPN
BO BFSJBM JNBHF UBLFO GSPN #JOH .BQT�

UIBU JT BMMPXFE JO UIF/&/���� TUBOEBSE�

6QPO GVSUIFS JOWFTUJHBUJPO JU XBT EJTDPW�
FSFE UIBU GPS NBOZ CVJMEJOHT UIF OFU JOUFS�
OBM BSFB DBMDVMBUFE GSPN UIF -0%�� NPEFM
XPVME CF WFSZ DMPTF UP UIF WBMVFT GSPN #"(
JG UIF TVSGBDF BSFB XIFSF UIF OFU IFJHIU JT
MFTT UIBO ��� N XBT OPU TVCUSBDUFE� *O UIJT
DBTF ��� PG UIF CVJMEJOHT TBUJTGZ UIF BM�
MPXFE UPMFSBODF� 4JODF TPNFNVOJDJQBMJUJFT
TUBSUFE UIF SFHJTUSBUJPO PG OFU JOUFSOBM BSFB
CFGPSF/&/����XBT JOUSPEVDFE XFCFMJFWF
UIBU TPNF PG UIFTF BSFBT XFSF SFHJTUFSFE VT�
JOH B EJȊFSFOU OFU TVSGBDF BSFB EFȍOJUJPO
UIBU EJE OPU FYDMVEF UIF BSFBT XIFSF UIF OFU
IFJHIU JT MFTT UIBO ��� N� 'PS NBOZ CVJME�
JOHT UIF OFU JOUFSOBM BSFB TIPVME QSPCBCMZ

OFFE UP CF SFDBMDVMBUFE JO PSEFS UP DPNQMZ
XJUI /&/ �����

5FTUT DPNQBSJOH PVS PCUBJOFE WBMVF GPS
UIF OFU JOUFSOBM BSFB XJUI UIBU SFHJTUFSFE
JO 80; TIPX TJNJMBS SFTVMUT XJUI 80;
EBUB 	XIJDI JT CFJOH EJTDPOUJOVFE
 CFJOH B
TPNFXIBU CF͊FS ȍU UP PVU DPNQVUFE WBM�
VFT� .PSF EFUBJMFE JOGPSNBUJPO PO BMM UFTUT
JT BWBJMBCMF JO #PFUFST <����>�

*O PSEFS UP ȍOE PVU UIF SFBTPOT GPS UIF
MBSHFTU EJȊFSFODFT CFUXFFO DPNQVUFE BOE
SFHJTUFSFE OFU JOUFSOBM BSFB B SBOEPN TBN�
QMF GSPN UIF �� PG UIF CVJMEJOH NPEFMT
DBVTJOH UIF MBSHFTU EJȊFSFODFT XFSF FYBN�
JOFE NBOVBMMZ BOE DPNQBSFE XJUI UIFJS

��

Results

18

5.3 model results and validity 77

Figure 49: LoD2+ result for a small part of Hoogvliet-Zuid. The exterior shell
is transparent such that the storey solids are visible.

storey using the snapping operation works out usually well (for ex-
ample see Figure 50), however is depending on the tolerance used. An
example is shown in Figure 51. Two buildings in this row of houses
are not snapped to the eaves of the roof, because the distance between
the initial height and the characteristic height is somewhat larger than
the tolerance while this is not the case for the other buildings. A larger
tolerance may solve this problem, but may introduce others. For ex-
ample the attic storey height may become too small if splitting the
building at the eaves of the roof if the distance between the initial
height and the characteristic height is too large.

Figure 50: Using the storey height snapping algorithm the storeys are
aligned with lower roof elements which would otherwise not be
the case.

	B
 	C

'JHVSF ��� -0%��NPEFMT GPS WBSJPVT HBCMFE IPVTFT� 5IF FYUFSJPS TIFMM JT USBOTQBSFOU TVDI
UIBU UIF TUPSFZ TPMJET BSF WJTJCMF�

	B
 	C

'JHVSF ��� $PNQBSJTPO CFUXFFO� 	B
 B HFOFSBUFE -0%�� NPEFM BOE 	C
 UIF CVJMEJOH GSPN
BO BFSJBM JNBHF UBLFO GSPN #JOH .BQT�

UIBU JT BMMPXFE JO UIF/&/���� TUBOEBSE�

6QPO GVSUIFS JOWFTUJHBUJPO JU XBT EJTDPW�
FSFE UIBU GPS NBOZ CVJMEJOHT UIF OFU JOUFS�
OBM BSFB DBMDVMBUFE GSPN UIF -0%�� NPEFM
XPVME CF WFSZ DMPTF UP UIF WBMVFT GSPN #"(
JG UIF TVSGBDF BSFB XIFSF UIF OFU IFJHIU JT
MFTT UIBO ��� N XBT OPU TVCUSBDUFE� *O UIJT
DBTF ��� PG UIF CVJMEJOHT TBUJTGZ UIF BM�
MPXFE UPMFSBODF� 4JODF TPNFNVOJDJQBMJUJFT
TUBSUFE UIF SFHJTUSBUJPO PG OFU JOUFSOBM BSFB
CFGPSF/&/����XBT JOUSPEVDFE XFCFMJFWF
UIBU TPNF PG UIFTF BSFBT XFSF SFHJTUFSFE VT�
JOH B EJȊFSFOU OFU TVSGBDF BSFB EFȍOJUJPO
UIBU EJE OPU FYDMVEF UIF BSFBT XIFSF UIF OFU
IFJHIU JT MFTT UIBO ��� N� 'PS NBOZ CVJME�
JOHT UIF OFU JOUFSOBM BSFB TIPVME QSPCBCMZ

OFFE UP CF SFDBMDVMBUFE JO PSEFS UP DPNQMZ
XJUI /&/ �����

5FTUT DPNQBSJOH PVS PCUBJOFE WBMVF GPS
UIF OFU JOUFSOBM BSFB XJUI UIBU SFHJTUFSFE
JO 80; TIPX TJNJMBS SFTVMUT XJUI 80;
EBUB 	XIJDI JT CFJOH EJTDPOUJOVFE
 CFJOH B
TPNFXIBU CF͊FS ȍU UP PVU DPNQVUFE WBM�
VFT� .PSF EFUBJMFE JOGPSNBUJPO PO BMM UFTUT
JT BWBJMBCMF JO #PFUFST <����>�

*O PSEFS UP ȍOE PVU UIF SFBTPOT GPS UIF
MBSHFTU EJȊFSFODFT CFUXFFO DPNQVUFE BOE
SFHJTUFSFE OFU JOUFSOBM BSFB B SBOEPN TBN�
QMF GSPN UIF �� PG UIF CVJMEJOH NPEFMT
DBVTJOH UIF MBSHFTU EJȊFSFODFT XFSF FYBN�
JOFE NBOVBMMZ BOE DPNQBSFE XJUI UIFJS

��

Results

19

	B
 	C

'JHVSF ��� $PNQBSJTPO CFUXFFO� 	B
 B HFOFSBUFE -0%�� NPEFM BOE 	C
 UIF CVJMEJOH GSPN
BO BFSJBM JNBHF UBLFO GSPN #JOH .BQT� /PUF IPX UIF TIPSU TUPSFZ DBVTFE CZ B
UFSSBDF JT HFOFSBUFE DPSSFDUMZ JO UIF -0%�� NPEFM�

CMVFQSJOUT BOE TUSFFU JNBHFSZ GSPN (PPHMF
4USFFU 7JFX� *O EFDSFBTJOH PSEFS PG JNQPS�
UBODF UIF SFTVMUT PG UIJT BOBMZTJT JOEJDBUF
UIBU UIF EJȊFSFODF JT NPTUMZ EVF UP� UIF TVS�
GBDF BSFB XIFSF UIF OFU IFJHIU JT CFMPX ���N
OPU CFJOH TVCUSBDUFE GSPN UIF OFU JOUFSOBM
BSFB JO #"(MBSHF TUFQ XFMMT CFJOH QSFTFOU
JO UIF CVJMEJOH UIF SPPG OPU CFJOH DPSSFDUMZ
NPEFMMFE JO UIF �%NPEFM BOE UIF CVJMEJOH
CFJOH TUJMM VOEFS DPOTUSVDUJPO BU UIF UJNF PG
MBTFS EBUB BDRVJTJUJPO� .PSF EFUBJMFE JOGPS�
NBUJPO PO UIJT WBMJEBUJPO JT BMTP BWBJMBCMF JO
#PFUFST <����>�

� %JTDVTTJPO BOE GVUVSFXPSL

5IF EFȍOJUJPO PG B $JUZ(.- -0%� UIBU
BMTP DPOUBJOT JOEPPS CVJMEJOH JOGPSNBUJPO
XJUI B MFWFM PG EFUBJM DPNQBSBCMF UP JUT FY�
UFSJPS JOGPSNBUJPO PQFOT UIF EPPS GPS UIF
NBOZ BQQMJDBUJPOT UIBU EP SFRVJSF JOEPPS
CVJMEJOH JOGPSNBUJPO CVU EP OPU SFRVJSF UIF
	WFSZ IJHI
 MFWFM PG JOEPPS EFUBJM EFȍOFE
JO $JUZ(.- -0%�� "T UIFTF NPEFMT SF�
GFSSFE UP JO UIJT QBQFS BT -0%��NPEFMT DBO
CF HFOFSBUFE JO B TJNJMBSMZ BVUPNBUFENBO�
OFS BT -0%� NPEFMT UIFJS DSFBUJPO EPFT
OPU DPNF XJUI TJHOJȍDBOUMZ JODSFBTFE BD�
RVJTJUJPO DPTUT DPNQBSFE XJUI -0%� NPE�
FMT� .PSFPWFS UIFJS JODSFBTFE BQQMJDBCJM�
JUZ JT JO MJOF XJUI UIF TUBUFE PCKFDUJWF PG

$JUZ(.- XIJDI JT UP DSFBUF HFOFSBM QVS�
QPTFNPEFMT UIBU DBOCFVTFE JONVMUJQMF BQ�
QMJDBUJPO BSFBT�

8F IBWF QSFTFOUFE B NFUIPE UP BVUPNBUJ�
DBMMZ DSFBUF -0%��NPEFMT GSPN-0%� POFT
XIJDI JT SPCVTU VTJOH /FG QPMZIFESB JO
PSEFS UP TVQQPSU HFPNFUSJD PQFSBUJPOT PO
WPMVNFUSJD PCKFDUT� 4JODF UIF WBTU NBKPS�
JUZ PG �% DJUZ NPEFMT EP OPU DVSSFOUMZ DPO�
UBJO UIF JOEPPS CVJMEJOHT HFPNFUSJFT <.PS�
UPO FU BM� ����> UIJT NFUIPE DPVME BMTP
DPOUSJCVUF UP BO JODSFBTF JO NPEFMT XIFSF
UIJT JOGPSNBUJPO JT BWBJMBCMF� 0VS NFUIPE
UP HFOFSBUF UIFTF NPEFMT IBT CFFO JNQMF�
NFOUFE VTJOH $("- BOE UIF JNQMFNFOUB�
UJPO IBT CFFO SFMFBTFE BT PQFO TPVSDF BOE
JT GSFFMZ BWBJMBCMF BU ����CUU	����>�
�U
�������6�U�
�5�����

0VS EFȍOJUJPO PG UIF -0%�� IBT CFFO SF�
BMJTFE JO UIF $JUZ(.- QSPDFEVSBM NPE�
FMMJOH FOHJOF EFWFMPQFE CZ #JMKFDLJ FU BM�
<����B> BT BOPUIFS BVUPNBUJD NFUIPE GPS
EFSJWJOH NPEFMT JO UIJT -0%�

5IJT NFUIPE IBT CFFO UFTUFE JO B DBTF TUVEZ
XJUI B TVCTFU PG UIF 3P͊FSEBN �% EBUBTFU
VTJOH UIF HFOFSBUFE -0%�� NPEFMT JO PS�
EFS UP DPNQVUF UIF OFU JOUFSOBM BSFB PG FBDI
SFTJEFODF XIJDI XBT DSPTT�WBMJEBUFE XJUI
UIF WBMVFT SFHJTUFSFE JO UIF PȋDJBM #"(
BOE 80; EBUBTFUT� #BTFE PO UIFTF BSFBT JU
XBT EJTDPWFSFE UIBU UIF SFHJTUFSFE WBMVFT GPS

��

Net internal area (stacked)

20

6.1
n

et
in

tern
a

l
a

rea
pa

ra
m

eters
a

n
d

a
lgo

rith
m

s
87

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

5

10

15

20

25

30

-1
00 -9

6
-9

2
-8

8
-8

4
-8

0
-7

6
-7

2
-6

8
-6

4
-6

0
-5

6
-5

2
-4

8
-4

4
-4

0
-3

6
-3

2
-2

8
-2

4
-2

0
-1

6
-1

2 -8 -4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

N
U

M
BE

R
O

F
BU

IL
D

IN
G

S

DIFFERENCE NET INTERNAL AREA LOD2+ - BAG FOR STACKED BUILDINGS [%]

Number of buildings Cumulative %

Figure 57: Histogram of the differences between the net internal area calculated for stacked buildings from the LoD2+ model and BAG. When the
difference is larger than zero, the net internal area of the LoD2+ buildings is larger than those of BAG.'JHVSF ���)JTUPHSBN PG UIF EJȊFSFODFT CFUXFFO UIF OFU JOUFSOBM BSFB DBMDVMBUFE GPS

TUBDLFE CVJMEJOHT GSPN UIF -0%�� NPEFM BOE #"(� 8IFO UIF EJȊFSFODF JT
MBSHFS UIBO [FSP UIF OFU JOUFSOBM BSFB PG UIF -0%�� CVJMEJOHT JT MBSHFS UIBO
UIPTF PG #"(�

NBOZ CVJMEJOHT EP OPU TFFN UP DPOGPSN UP
UIF /&/ ���� TUBOEBSE�

"O JNQPSUBOU DIBMMFOHF JO JODSFBTJOH UIF
BQQMJDBCJMJUZ PG TVDI B NFUIPE JT UIF GBDU
UIBU CVJMEJOHT JO NBOZ $JUZ(.- NPEFMT
EP OPU GPSN WBMJE DMPTFE PCKFDUT� " GV�
UVSF QPTTJCJMJUZ UP FOTVSF UIBU UIJT JT UIF
DBTF JT UP SFQBJS UIF NPEFM VTJOH TISJOL�
XSBQQJOH <;IBP FU BM� ����> XIJDI VTFT
DBSWJOH PQFSBUJPOT PO B DPOTUSBJOFE UFUSB�
IFESBMJTBUJPO PG UIF JOQVU� 5IJT TIPVME CF
BCMF UP BMXBZT HFOFSBUF B WBMJE WPMVNF GSPN
BSCJUSBʄ JOQVU CVU JO FYUSFNF DBTFT UIF PVU�
QVU DBO IBWF B TJHOJȍDBOUMZ DIBOHFE TIBQF
GSPN UIF JOQVU�

*O UIF GVUVSF XF QMBO UP TJNJMBSMZ FYUFOE
$JUZ(.- XJUI -0%�� BOE -0%�� NPEFMT
SFTQFDUJWFMZXJUI B MFWFM PG JOEPPSEFUBJM DPS�
SFTQPOEJOH UP -0%� BOE -0%� BOE JOWFT�
UJHBUF UIFJS QPTTJCMF BQQMJDBUJPOT� 'PS HFO�
FSBUJOH UIF -0%�� NPEFM XF QMBO UP JO�
WFTUJHBUF UIF VTF PG QSPDFEVSBM NPEFMMJOH
GPS UIF HFOFSBUJPO PG UIF JOEPPS HFPNF�
USJFT <#FDLFS FU BM� ����� 1FUFS FU BM� �����
(SÑHFS BOE 1M×NFS ����� *MƨÈL BOE 8JN�
NFS ����>� 8F BMTP QMBO UP JOWFTUJHBUF
XIFUIFS -0%Y� ȍUT XJUIJO UIF GSBNFXPSL
PG DPOUJOVPVT -0%T <"SSPZP 0IPSJ FU BM�
����B>�

"DLOPXMFEHFNFOUT

8F XPVME MJLF UP UIBOL UIF BOPOZNPVT SF�
WJFXFST XIP HSFBUMZ JNQSPWFE UIF QBQFS
XJUI UIFJS WFSZ IFMQGVM DPNNFOUT� 5IJT
SFTFBSDI XBT ȍOBODJBMMZ TVQQPSUFE CZ UIF
%VUDI 5FDIOPMPHZ 'PVOEBUJPO 458 XIJDI
JT QBSU PG UIF /FUIFSMBOET 0SHBOJTBUJPO GPS
4DJFOUJȍD 3FTFBSDI 	/80
 BOE XIJDI JT
QBSUMZ GVOEFE CZ UIF .JOJTUSZ PG &DPOPNJD
"ȊBJST 	QSPKFDU DPEF �����
�

3FGFSFODFT
3 "LNBMJB) 4FUBO ; .BKJE % 4VXBSEIJ

BOE"$IPOH� 5-4 GPS HFOFSBUJOHNVMUJ�
-0% PG �% CVJMEJOH NPEFM� *01 $POGFS�
FODF 4FSJFT� &BSUI BOE &OWJSPONFOUBM 4DJ�
FODF� 1SPDFFEJOHT PG UIF �UI *OUFSOBUJPOBM
4ZNQPTJVN PG UIF %JHJUBM &BSUI 	*4%&�

����r� 'FCSVBSZ �����

/ "MBN 7 $PPST BOE 4 ;MBUBOPWB� %FUFDU�
JOH TIBEPX GPS EJSFDU SBEJBUJPO VTJOH
$JUZ(.- NPEFMT GPS QIPUPWPMUBJD QP�
UFOUJBMJUZ BOBMZTJT� *O $ &MMVM 4 ;MB�
UBOPWB . 3VNPS BOE 3PCFSU -BV�
SJOJ FEJUPST 6SCBO BOE 3FHJPOBM %BUB
.BOBHFNFOU QBHFT ���r���� 3 1SFTT
�����

��

Net internal area (non-stacked)

21

6.2
co

m
pa

riso
n

w
ith

ba
g

89

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

100

200

300

400

500

600

700

800

900

-1
00 -9

6
-9

2
-8

8
-8

4
-8

0
-7

6
-7

2
-6

8
-6

4
-6

0
-5

6
-5

2
-4

8
-4

4
-4

0
-3

6
-3

2
-2

8
-2

4
-2

0
-1

6
-1

2 -8 -4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

CU
M

U
LA

TI
VE

 [%
]

N
R

O
F

BU
IL

DI
N

GS

DIFFERENCE NET INTERNAL AREA LOD2+ - BAG [%]

Nr of buildings Cumulative

Figure 58: Histogram of the differences between the net internal area calculated for non-stacked buildings from the LoD2+ model and BAG. When the
difference is larger than zero, the net internal area of the LoD2+ buildings is larger than those of BAG.'JHVSF ���)JTUPHSBN PG UIF EJȊFSFODFT CFUXFFO UIF OFU JOUFSOBM BSFB DBMDVMBUFE GPS OPO�

TUBDLFE CVJMEJOHT GSPN UIF -0%�� NPEFM BOE #"(� 8IFO UIF EJȊFSFODF JT
MBSHFS UIBO [FSP UIF OFU JOUFSOBM BSFB PG UIF -0%�� CVJMEJOHT JT MBSHFS UIBO
UIPTF PG #"(�

, "SJOHFS BOE 3 3PTDIMBVC� #BWBSJBO �%
#VJMEJOH .PEFM BOE 6QEBUF $PODFQU
#BTFE PO -J%"3 *NBHF .BUDIJOH BOE
$BEBTUSF *OGPSNBUJPO� *O *OOPWBUJPOT JO
�% (FP�*OGPSNBUJPO 4DJFODFT QBHFT ���r
���� 4QSJOHFS *OUFSOBUJPOBM 1VCMJTIJOH
�����

,FO "SSPZP 0IPSJ)VHP -FEPVY 'JMJQ #JM�
KFDLJ BOE +BOUJFO 4UPUFS� .PEFMMJOH B
�% DJUZNPEFM BOE JUT MFWFMT PG EFUBJM BT B
USVF �%NPEFM� *4134 *OUFSOBUJPOBM +PVS�
OBM PG (FP�*OGPSNBUJPO 	�
�����r���� KVM
����B�

,FO "SSPZP 0IPSJ)VHP -FEPVY BOE
+BOUJFO 4UPUFS� "O FWBMVBUJPO BOE DMBT�
TJȍDBUJPO PG O% UPQPMPHJDBM EBUB TUSVD�
UVSFT GPS UIF SFQSFTFOUBUJPO PG PCKFDUT
JO B IJHIFS�EJNFOTJPOBM (*4� *OUFSOB�
UJPOBM +PVSOBM PG (FPHSBQIJDBM *OGPSNBUJPO
4DJFODF ��	�
����r��� GFC ����C�

4 #FDLFS . 1FUFS % 'SJUTDI % 1IJMJQQ
1 #BJFS BOE $ %JCBL� $PNCJOFE (SBN�
NBS GPS UIF .PEFMJOH PG #VJMEJOH *OUF�
SJPST� *O *4134 "OOBMT PG 1IPUPHSBNNF�
Uʄ 3FNPUF 4FOTJOH BOE 4QBUJBM *OGPSNB�
UJPO 4DJFODFT� 1SPDFFEJOHT PG UIF *4134 "D�
RVJTJUJPO BOE .PEFMMJOH PG *OEPPS BOE &O�
DMPTFE &OWJSPONFOUT XPSLTIPQ QBHFT �r
� $BQF 5PXO 4PVUI "GSJDB %FDFNCFS
�����

+PBDIJN #FOOFS "OESFBT (FJHFS (FSIBSE
(SÑHFS ,BSM�)FJO[)¿GFMF BOE .BSD�
0MJWFS -ÑXOFS� &OIBODFE -0% DPO�
DFQUT GPS WJSUVBM �% DJUZ NPEFMT� *O
6NJU *TJLEBH FEJUPS *4134 "OOBMT� 1SP�
DFFEJOHT PG UIF *4134 �UI �% (FP*OGP $PO�
GFSFODFŲ8(**��8PSLTIPQ QBHFT ��r��
*TUBOCVM 5VSLFZ /PWFNCFS �����

)� #JFSJ BOE 8� /FG� &MFNFOUBSZ TFU PQFSB�
UJPOT XJUI E�EJNFOTJPOBM QPMZIFESB� *O
)BSUNVU /PMUFNFJFS FEJUPS $PNQVUB�
UJPOBM (FPNFUʄ BOE JUT "QQMJDBUJPOT WPM�
VNF ��� PG -FDUVSF/PUFT JO $PNQVUFS 4DJ�
FODF QBHFT ��r���� 4QSJOHFS #FSMJO)FJ�
EFMCFSH �����

'JMJQ #JMKFDLJ)VHP -FEPVY BOE +BOUJFO
4UPUFS� &SSPS QSPQBHBUJPO JO UIF DPN�
QVUBUJPO PG WPMVNFT JO �% DJUZ NPEFMT
XJUI UIF .POUF $BSMP NFUIPE� *O 4 -J
BOE 4 %SBHJDFWJD FEJUPST *4134 "OOBMT�
1SPDFFEJOHT PG UIF *4134�*(6 +PJOU *OUFS�
OBUJPOBM $POGFSFODF PO (FPTQBUJBM ŊFPʄ
1SPDFTTJOH .PEFMMJOH BOE "QQMJDBUJPOT
QBHFT ��r�� 5PSPOUP $BOBEB 0DUPCFS
����B�

'JMJQ #JMKFDLJ)VHP -FEPVY BOE +BOUJFO
4UPUFS�)FJHIU SFGFSFODFT PG $JUZ(.-
-0%� CVJMEJOHT BOE UIFJS JOșVFODF
PO BQQMJDBUJPOT� *O .BSUJO #SFVOJH
"M�%PPSJ .VMIJN &EHBS #VUXJMPXTLJ
1BVM 7JODFOU ,VQFS +PBDIJN #FOOFS

��

• Motivation: update 3D city models from
designed BIM models (including
potentially interiors)

• Fill gaps using Minkowski sum to
increase size of elements

• Merge elements using Boolean set
union

• Reclassify surfaces

22

Automatic generation of
CityGML LoD3 building

models from IFC models

December 2013

MSc thesis in Geoma cs
by Sjors Donkers

Department of GIS Technology
OTB Research Ins tute for the Built Environment

Goal

23

In this article we propose a novel algorithm for the automatic conversion of IFC buildings
models into semantically rich and geometrically valid CityGML LOD3 buildings. Unlike the
previous algorithms attempting to convert input information in the output model without
additional reasoning, we developed an output-driven solution where the geometries are modi-
fied to construct valid LOD3 models. Our algorithm, described in Section 4 and illustrated in
Figure 5, contains three main steps: (1) the filtering and the mappings of the semantics; (2) the
geometric transformations needed to extract the exterior envelope of a building; and (3) further
geometrical refinements to ensure validity of the output model. For the first step we partly reuse
existing work and extend it; the second and third steps are the main contributions of this arti-
cle. We have implemented our algorithm in C11 and the code is freely available under an
open-source licence (github.com/tudelft3d/ifc2citygml). Section 5 presents the results we
obtained with different IFC models, and shows that our approach does produce geometrically
valid and semantically rich LOD3 models. Finally, in Section 6 we discuss the shortcomings of
our approach, and we also propose some simple changes to the IFC standard that would yield a
simpler and better conversion to CityGML

2 Modeling buildings with the IFC and CityGML standards

In this section, we briefly describe how buildings are modeled with the IFC standard and what
a CityGML semantically rich and geometric valid LOD3 model is.

2.1 Industry Foundation Classes (IFC)

IFC is a standardized open data model used in multidisciplinary building projects for managing
complex communication and information sharing processes throughout the life cycle of the
building (Sebastian and van Berlo 2010; ISO 2013). The most relevant IFC classes for building
object types, and their relationships, are shown in Figure 3. These are based on Nagel and
Kolbe (2007) and El-Mekawy et al. (2012). It is important to be aware that an IfcObject
and its sub-classes can be recursively decomposed into other IfcObjects. While there are
many other relationships possible, only two are relevant for CityGML: (1) IfcRelContaine-
dInSpatialStructure to determine whether an object is part of a given building or the sur-
rounding site; (2) IfcRelDefinesByType to check whether there is an IfcTypeObject
which contains more information on the object. This relationship exposes the

Figure 2 Cross-section of an IFC model (left) for which all the relevant geometries are converted
to CityGML geometries (right model). Observe that the result is not a single envelope because
several volumes are constructed (e.g. each slab of the roof is a volume)

Automatic conversion of IFC datasets to CityGML LOD3 buildings 3

VC 2015 John Wiley & Sons Ltd Transactions in GIS, 2015, 00(00)

3DCM vs BIM

24

Methodology (semantics)

25

4.1 Semantic Filtering and Mappings

An LOD3 building in CityGML can have semantic properties for both the solid and the surfa-
ces of this solid. As described in Section 2, there are six possibilities for a boundary surface.
IFC has a different structure for storing the semantics and objects are connected via a network
of relations. For the extraction of CityGML semantics from an IFC object, the IFC class and
the type of the object are in most cases sufficient. However, there are cases for which the net-
work of relations needs to be traversed in search of the optimal semantics. In brief, to deter-
mine what the semantics are in CityGML for one particular surface, we need a combination of
multiple semantic values from IFC and certain geometric properties are required.

For our conversion, we partly reuse the filtering and the mapping methods from El-
Mekawy and €Ostman (2010) and de Laat and van Berlo (2011). However, with these, an IFC
object (a solid) is mapped to a set of surfaces and all of them get the semantics of the solid. This
is problematic because a wall (modeled as a solid in IFC) forming the exterior of a building will
have some faces that are outside and some that are inside. We have therefore modified several
mappings and extended them with new ones such that the surfaces from a solid can get differ-
ent semantics. We have also defined how and when the network needs to be traversed in search
of better semantics and how to determine whether an IFC object should be part of the conver-
sion or not. To determine the proper semantic for a surface, we use the following criteria:

1. Whether it is semantically contained in a building, or not;
2. Whether the entity class belongs to a building type;
3. The PreDefinedType attribute;
4. Whether it decomposes another object, or not; and
5. The normal vector of a surface (its orientation).

Figures 6 and 7 provide an overview of the filtering and the mapping workflow.

4.1.1 Filtering

There are around 900 classes defined in the IFC schema. However, the most relevant classes for
CityGML are only a subset of these: IfcSpace and all the subtypes of IfcBuildingEle-
ment. All other classes either represent movable objects or are abstract classes without geome-
try. For each IfcObject in an IFC file, we verify whether it has a geometry and whether it is
contained inside a building; for the latter the IfcRelContainedInSpatialStructure
relation is used recursively. Filtering these objects leaves us to deal only with objects having
meaningful mappings in CityGML.

Semantic
Mapping

Geometric
Transformation

Geometric &
Semantic

Refinement

IFC CityGML

Figure 5 General workflow diagram of our algorithm. Notice that the roofs of both models have
been removed so that the interior of the model is visible

Automatic conversion of IFC datasets to CityGML LOD3 buildings 7

VC 2015 John Wiley & Sons Ltd Transactions in GIS, 2015, 00(00)

Methodology (geometry)

26
We discuss further in Section 5 the artifacts that our approach creates.

4.2.2 Shape, size and orientation of the structuring element

Because man-made buildings usually have surfaces perpendicular to each others, we use a cubi-
cal structuring element. Besides yielding geometries that are not perpendicular to each other, a
spherical structuring element would have a negative influence on the computation time because
a higher number of linear geometries would be needed to approximate the sphere.

The size and the orientation of a cubical structuring element will have an influence on the
closing operator. From our practical experience with several IFC datasets, a size between
100 and 300 mm (this is the length of one edge of the cube) was found to give the most satisfac-
tory results. A larger width could collapse narrow windows to lines, or merge several windows
close to each other into one large window. If a model requires a different value, the size of the
cube can be defined by the user in our prototype implementation.

As described in Boeters (2015), there are two strategies to assign the orientation to a cubi-
cal structuring element: (1) constant for the whole model (the predominant normals of all the
surfaces); (2) aligned with each surface. The result for a simple building is shown in Figure 11.
Observe in Figure 11b that although the dilation distance is constant for all surfaces, artifacts
are created whenever there is a convex corner with an angle h 6¼ 90". Since these artifacts do
not disappear during the erosion, a surface aligned strategy should not be used. In the proto-
type implementation, we use a constant orientation, and we assume that buildings are vertical,
i.e. the cube is rotated only along its z-axis to match the building’s main orientation.

(a) input (b) union (c) dila!on (d) result (e) erosion (f) final result

Figure 10 Closing operator applied to imperfect geometries

(a) Constant

 orienta!on

(b) Orienta!on

 aligned with

 surfaces

Figure 11 Dilation of a simple building (grey) with a cubical structuring element

Automatic conversion of IFC datasets to CityGML LOD3 buildings 13

VC 2015 John Wiley & Sons Ltd Transactions in GIS, 2015, 00(00)

(a) input (b) union (c) dila�on (d) result (e) erosion (f) final result

Results

27

Figure 17 FZK-House dataset, available at www.iai.fzk.de/www-extern/index.php?id=1174&L=0

Figure 18 FJK-House dataset, available at www.iai.fzk.de/www-extern/index.php?id=1167&L=0

Figure 19 Haus-G-H dataset, available at code.google.com/p/bimserver/source/browse/trunk/Test-
Data/data/AC9R1-Haus-G-H-Ver2-2x3.ifc

Figure 20 Model-4351 dataset, available at code.google.com/p/bimserver/source/browse/trunk/
TestData/data/4351.ifc

18 S Donkers, H Ledoux, J Zhao and J Stoter

VC 2015 John Wiley & Sons Ltd Transactions in GIS, 2015, 00(00)

Results

28

Figure 17 FZK-House dataset, available at www.iai.fzk.de/www-extern/index.php?id=1174&L=0

Figure 18 FJK-House dataset, available at www.iai.fzk.de/www-extern/index.php?id=1167&L=0

Figure 19 Haus-G-H dataset, available at code.google.com/p/bimserver/source/browse/trunk/Test-
Data/data/AC9R1-Haus-G-H-Ver2-2x3.ifc

Figure 20 Model-4351 dataset, available at code.google.com/p/bimserver/source/browse/trunk/
TestData/data/4351.ifc

18 S Donkers, H Ledoux, J Zhao and J Stoter

VC 2015 John Wiley & Sons Ltd Transactions in GIS, 2015, 00(00)

Results

29

the conversion (six are created). The input model contains no errors, and thus the clos-
ing operation was not necessary.
FJK-House Closing with a structuring element of 300 mm is required, otherwise several
rooms in the buildings would not be removed. The carport, the balcony and the chimney
are part of the exterior shell in the CityGML model, while these should be ‘BuildingIn-
stallations’. The input semantics of IFC are not expressive enough to permit us to detect
these. The 12 BuildingInstallations are the beams supporting the carport.
Haus-G-H Closing is also required otherwise not all rooms would be removed. How-
ever, this causes artifacts under the roof overhangs, as shown in Figure 22. Aside from
the missing ‘GroundSurface’ the semantics could be better if also the balcony and dor-
mer were extracted as ‘BuildingInstallations’.
Model-4351 No closing was necessary. The input model does not have any objects
related to a roof. Since the highest slab is surrounded by a balustrade we assume that
it is meant as a walkable surface. We believe the resulting OuterFloorSurface to
be appropriate. The BuildingInstallations are the stairs and fences around the
building.
Office Building While the input geometry contains a big hole caused by a revolving
door not being closed (see Figure 15), this does not cause a problem as the entrance
hall is modeled with an IfcSpace (which effectively closes the gap). Although this is
not the preferred way to model the entrance, it is allowed by IFC. The only issue is that
the slab above the entrance lacks semantics in the input, and is converted to Floor-
Surface because of the orientation of the normal (while it should be a
RoofSurface).

Figure 21 Office-Building dataset, available at www.iai.fzk.de/www-extern/index.php?id=1184&L=0

Figure 22 Artifacts occur at concave parts of the geometry that are not aligned with the structur-
ing element

Automatic conversion of IFC datasets to CityGML LOD3 buildings 19

VC 2015 John Wiley & Sons Ltd Transactions in GIS, 2015, 00(00)

Issues

30

and sliding doors (see Figure 15). The main requirements for the semantics in the IFC file are
that: (1) the input objects should be subtypes of IfcBuildingElement; and (2) they should
be (indirectly) contained in a IfcBuilding spatial structure.

We have tested our prototype with several publicly available IFC datasets. Table 2 shows a
selection of them. These were generated with different software packages, and range from a
simple house to an office building. With our prototype implementation, all these models were
successfully converted to geometrically and semantically valid CityGML LOD3 models. The
models were first processed without the closing operation. If the result was not a closed enve-
lope then a cubical structuring element of 300 mm was used. All the errors in the input models
were fixed in this way. However some artifacts in the output models were introduced, we dem-
onstrate a few of these in Figure 22.

Figure 14 Missing geometries in the input IFC are problematic for the conversion to LOD3
buildings

Figure 15 The revolving entrance door of the building is not closed, which causes the exterior
surface of the building to contain a hole

16 S Donkers, H Ledoux, J Zhao and J Stoter

VC 2015 John Wiley & Sons Ltd Transactions in GIS, 2015, 00(00)

• Motivation: repair 3D models so that
they can be used in applications

• Voxelisation

• Reconstruction of mesh

• Obtain semantics and export

31

A U TO M AT I C R E PA I R O F 3 D C I T Y B U I L D I N G M O D E L S U S I N G A
V O X E L- B A S E D R E PA I R M E T H O D

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics

by

Damien Mulder

M.Sc Geomatics Thesis

June 2015

Fixing 3D models

32

2 ������������

These kinds of tools have a great potential to enhance the workflow and
decision making in many working fields. A prerequisite is that the built
environment has to be accurately modeled into a computer understandable
data format. Three ways of generating 3D City models are described in
[Singh et al., 2013]. The first technique is described as conventional and
involves using vector maps (such as cadastre data) and height points. The
second technique makes use of high resolution satellite images. The third
technique applies close range photogrammetry on terrestrial images. An
automatic generation process using a Digital Elevation Model (DEM) in com-
bination with Cadastre data is proposed by Durupt and Taillandier [2006].
The buildings roof geometry is created by comparing height point data to a
set of predefined roof shapes. A method which may yield higher precision
is the procedural creation of 3D City models using point clouds, which is
described by Lafarge and Mallet [2012]. A multitude of efficient ways of
creating of 3D City models is currently present. However, defects may be
present in these models due to manual errors, model optimization, data
conversions, misinterpretation of the data standard or unexpected cases
in the applied algorithms. Figure 2 shows two examples of incorrectly
modeled building models.

(a) Hole in building model (b) Overshoot in building model

Figure 2: Examples of visible defects in a 3D City model

Although 3D City models offer a structured way of storing geometry, in
practice a significant amount of geometry is not considered valid. Geo-
metric defects that may occur are self-intersections, folding, invalid holes,
wrong orientation or non-2-manifold solids. This hinders the further ana-
lyzing or processing of these models, for instance computing the volume
or performing boolean operations. Therefore the use of valid geometry is
essential to be able to make use of the benefits of 3D City Models. Validation
processes have been developed in order to check a dataset for some of
these formats. An example of such a validation process for the CityGML
data standard (see § 2.1.2 for a description) has been created based on the
work of [Ledoux, 2013]. A web service running this process is available at
http://geovalidation.bk.tudelft.nl/val3dity, enabling users to check
their datasets. In case datasets are not completely valid, repair methods are
needed to restore the geometry.

Methodology

33

Voxelization

CityGML input

Preprocessing

Approach 1:
Marching Cubes

Approach 2:
Dual Contouring

CityGML output

parser

writer

Voxelisation

34

Voxelisation: overshoot

35

Voxelisation: gap

36

Voxelisation: shooting rays

37

Majority counting: overshoot

38

Majority counting: gap

39

Marching cubes

40

40 ������� ����

the numbering of the cubes’ vertices, of which the numbering is illustrated
in Figure 36b. Two examples of cases are visible in Figure 37.

(a) Case 1 (b) Case 2

Figure 37: Examples of Marching Cubes cases

Illustrations of all 15 cases are given in the appendix (see Appendix A).
An overview of the process is given in algorithm 3.6.

Algorithm 3.6: Marching Cubes
Lorensen and Cline [1987]

Input: A binary grid G containing voxels Vijk with values 0 for
exterior, 1 for interior. A look-up table for 256 cube
configurations

Output: A triangular mesh M

1 for Vijk in G do
2 Get configuration of cube Vi..i+1,j..j+1,k..k+1
3 Look up triangles for cube configuration in table
4 for triangle returned by lookup table do
5 add triangle to mesh M
6 end
7 end

Two drawbacks of this method for building models are its approximation
of oblique surfaces and the possibility of ambiguous cases. Figure 38 shows
how an oblique surface is voxelized and turned into a triangle mesh. The
surface in this example is oriented at a 30�angle. Since the vertices are
placed in the middle of an edge, the original surface can only be approxi-
mated by connecting triangles under 45�angles.

(a) Voxelized oblique surface (b) Stair stepping

Figure 38: Applying Marching Cubes on a binary grid

To create smooth surfaces, an edge decimation strategy is applied by Noorud-
din and Turk [2003]. This principle will be explained in § 3.5.2 and the

40 ������� ����

the numbering of the cubes’ vertices, of which the numbering is illustrated
in Figure 36b. Two examples of cases are visible in Figure 37.

(a) Case 1 (b) Case 2

Figure 37: Examples of Marching Cubes cases

Illustrations of all 15 cases are given in the appendix (see Appendix A).
An overview of the process is given in algorithm 3.6.

Algorithm 3.6: Marching Cubes
Lorensen and Cline [1987]

Input: A binary grid G containing voxels Vijk with values 0 for
exterior, 1 for interior. A look-up table for 256 cube
configurations

Output: A triangular mesh M

1 for Vijk in G do
2 Get configuration of cube Vi..i+1,j..j+1,k..k+1
3 Look up triangles for cube configuration in table
4 for triangle returned by lookup table do
5 add triangle to mesh M
6 end
7 end

Two drawbacks of this method for building models are its approximation
of oblique surfaces and the possibility of ambiguous cases. Figure 38 shows
how an oblique surface is voxelized and turned into a triangle mesh. The
surface in this example is oriented at a 30�angle. Since the vertices are
placed in the middle of an edge, the original surface can only be approxi-
mated by connecting triangles under 45�angles.

(a) Voxelized oblique surface (b) Stair stepping

Figure 38: Applying Marching Cubes on a binary grid

To create smooth surfaces, an edge decimation strategy is applied by Noorud-
din and Turk [2003]. This principle will be explained in § 3.5.2 and the

Dual contouring

41

dual

grid

Dual contouring

42

interior voxel

grid edge with
sign change

exterior voxel

Dual contouring

43

�.� ������� �������������� 45

green. These green edges are expected to intersect with the original model.
Each of these edges is neighboring with 4 cubes. Only for these cubes the
dual position is required. An illustration of the configuration of a grid edge
and its 4 neighbors in 3D is shown in Figure 46.

Figure 46: Diagram of the Dual Contouring principle

By connecting the 4 duals of the cubes neighboring with the grid edge, 1
quad (or 2 triangles) can be created. Now in order to compute the dual ver-
tex positions, Dual Contouring makes use of Hermite data. Strictly speaking,
the Hermite data contains the values of a function and its derivatives. In
case of a 3D model this translates to a set of intersection points between the
grid edges and the original input surfaces p and the corresponding surface
normals n. This can be estimated by using a method such as Principal
Component Analysis (PCA) as described by Wold et al. [1987]. For every
grid edge which intersects with the polygonal model, the intersection point
and surface normal are stored. Based on these values, a vertex position can
be determined within every grid cell. Figure 47 shows an illustration in
2D of how the intersection and normal vector can be used to compute dual
vertex within a grid cell. By connecting these dual vertices, the surfaces can
be reconstructed.

Figure 47: Diagram of using Hermite data [Ju et al., 2002]

Dual contouring

44

�.� ������� �������������� 45

green. These green edges are expected to intersect with the original model.
Each of these edges is neighboring with 4 cubes. Only for these cubes the
dual position is required. An illustration of the configuration of a grid edge
and its 4 neighbors in 3D is shown in Figure 46.

Figure 46: Diagram of the Dual Contouring principle

By connecting the 4 duals of the cubes neighboring with the grid edge, 1
quad (or 2 triangles) can be created. Now in order to compute the dual ver-
tex positions, Dual Contouring makes use of Hermite data. Strictly speaking,
the Hermite data contains the values of a function and its derivatives. In
case of a 3D model this translates to a set of intersection points between the
grid edges and the original input surfaces p and the corresponding surface
normals n. This can be estimated by using a method such as Principal
Component Analysis (PCA) as described by Wold et al. [1987]. For every
grid edge which intersects with the polygonal model, the intersection point
and surface normal are stored. Based on these values, a vertex position can
be determined within every grid cell. Figure 47 shows an illustration in
2D of how the intersection and normal vector can be used to compute dual
vertex within a grid cell. By connecting these dual vertices, the surfaces can
be reconstructed.

Figure 47: Diagram of using Hermite data [Ju et al., 2002]

Full process

45

(a) The original polygonal model (b)Marching Cubes result

(c)Dual Contouring result (d) Pressing result

Results

46

58 �� �����-����� ������ ������

Figure 61: A buffer on the grid is needed after aligning

Updating the dimension and scale of the grid after creating a buffer:

dimensionnew = dimensionold + 2 (10a)
scalenew = scaleold + (2 · voxelsize) (10b)

translatenew = translateold � voxelsize (10c)

The updating of each of the x-, y- & z- translation values depends on the
sign of the value. Updating a positive translation value:

translatenew = translateold � voxelsize (11)

Updating a negative translation value:

translatenew = translateold + voxelsize (12)

���� ������
The theory in § 3.2.2 has described that two effective ways of scan conversion
are Parity Count or Ray Stabbing. Although Ray Stabbing may have a better
repair capability for very defective input containing self-intersections and
double surfaces, it does not reconstruct any buildings with a hole or concave
buildings with overhangs. Therefore it is considered too limited and Parity
Count method will be used instead.

������ �� ���� ����������
The number of scan directions may improve the repair capability, however
the processing speed will increase quickly. An example of a CityGML
building with a manually added gap is shown. Figure 62 where 6 scan
directions are used to correctly produce the volumetric representation of
the building.

(a) CityGML model with 2 gaps (b) Correct scan conversion

Figure 62: Correct volumetric representation

However, when one more gap is introduced, a scan conversion in 6 direc-
tions is no longer sufficient. Figure 63 illustrates a dent in the model, where
gaps are found in 3 out of 6 orthogonal directions.

Results

47

�.� ������������ 59

(a) CityGML model with 3 gaps (b) Incorrect scan conversion

Figure 63: Defective volumetric representation due to combination of three gaps

There are two options to produce a correct result for a building such as in
Figure 63a. By using a 26-direction scan, the building model can be turned
into a correct volumetric representation as shown in Figure 62b. However,
this is at the cost of the processing time. The second option is to decrease
the voting threshold in certain cases, which will be described in the next
paragraph. It is decided that scanning in 6 orthogonal directions will be
sufficient unless the input models are severely defective.

������ ���������
Until now all voting thresholds were set at the number of scan directions
divided by two. All voxels that are considered as interior have a number
of votes higher than the threshold, hence the name majority voting. Since
a number of voting directions has been set at 6, the threshold will be 3
meaning that at least 4 votes are needed for a voxel to be filled. However, in
case of severe defects (multiple gaps, self-intersections or double surfaces)
a threshold of 3 may be too strict to produce a correct volumetric represen-
tation. As described in Section 3.2 a closely related algorithm was used by
Steuer et al. [2015]. In their work they are choosing to scan in 6 orthogonal
directions and set the threshold to n/2 (n = number of scan rays). No
particular problems have been described in their results. However, when
severely defective models are processed unwanted results may occur. An-
other manually edited example of problematic input is visible in Figure 64.
Here a double surface, overshoot and gap are located in the same area of the
building. Using the regular 6 directional scan conversion with a threshold
of 3 results in an incorrect result.

(a) CityGML model with double sur-
face, overshoot and gap

(b) Incorrect scan conversion due to
multiple errors

Figure 64: Defective volumetric representation due to combination of double surface
and hole

Similar to the previously shown model, lowering the threshold or raising
the number of scan directions will produce a correct result. Since these
models were manually made to illustrate the limitations of the scan con-

Artefacts

48

60 �� �����-����� ������ ������

version, these parameters can be considered as a detail. In general these
combinations of defects will be rare. Additionally, an easier step which
does not need an adaption of the parameters is aligning the model.

�.�.� Possible artefacts

Using the previously described scan conversion may result in three kinds of
aliasing artefacts:

• Stair stepping

• Hanging voxels

• ’Saw tooth’ effect

The stair-stepping effect (see Figure 65a) is to be expected, as it approx-
imates the interior close to an oblique surface. This is inherent to the
voxelization process but may remain visible in a pure binary grid surface
reconstruction (see Section 4.3). A related artefact occurs when there are
sharp angles on the border of oblique surfaces, which will result in hanging
voxels only connected to one other voxel. An example of this is visible in
Figure 65b. These are not acceptable since they could result in unexpected
output geometry or ambiguous cases in the surface reconstruction process.
The artefact which is described as ’saw tooth effect’ is a result from the
combination of the precision of calculating the intersection point and the
almost parallel surfaces. An example is shown in Figure 66.

(a) Stair-stepping artefact (b) Hanging voxel artefact

Figure 65: Examples of artefacts in the volumetric representation

(a) Nearly parallel surfaces (b) Saw tooth artefact

Figure 66: Example of a saw tooth artefacts in the volumetric representation

����-��������

An option for decreasing the artefacts is to perform down-sampling on the
grid, as described in § 3.2.4. This has been tested on on several of the
input models but in general the artefacts were moved but still present. An
example of this is illustrated in Figure 67.

Results

49

62 �� �����-����� ������ ������

(a) Severely defective building with
edge adjacent box

(b) Volumetric representation only
edge connected

Figure 68: Building which requires the connected components selection

components are only edge connected. When this is left like this, it may
result in several ambiguous cases such as depicted in Figure 39 in § 3.4.2.

��� �������
Although rarely encountered, in theory it is possible that gaps are present
inside the volumetric grid. Removing these is essential for valid output. To
do so Distance Mapping is applied by [Nooruddin and Turk, 2003] as was
described in § 3.3.2.

(a) Volumetric representation before
distance mapping

(b) Volumetric representation after
distance mapping

Figure 69: Corners rounded off after distance mapping

Figure 69 shows that the application of distance mapping results in rounded
off corners. This has a large impact on the surface reconstruction and is
thus not acceptable for 3D City model repair. For these reasons the slower
but more effective method of removing holes by looking at the connected
components of the inverse grid, as described in § 3.3.3 is applied.

�������� ���������

As was stated before, the removal of hanging voxels is important to avoid
the creation of artefacts and avoid any marching cubes ambiguities. To
detect these voxels, a filtering based on the 6-adjacency is applied (see § 3.3.1
for the theory). An example of the filtering is illustrated in Figure 70.

�.�.� Isosurface extraction: Marching Cubes

Once the desired volumetric representation has been created, the binary
grid can be converted to a triangle mesh. At this point the input volume

• Motivation: improving the accuracy of
the location of personal weather
stations for urban heat island research

• Generate potential locations

• Evaluate them through skyview + solar
modelling

50

�

��

 �

 <?@>D8=6�;>20B8>=�022C@02G�>5�0�2@>E3A>C@243�E40B74@�
AB0B8>=�1G�CA8=6�0�?>8=B�2;>C3�

CA4�20A4�10A4�%4B0B<>�>=�B74��06C4�

 ,9,/��6�

�6-:���	
�
�

Urban heat island

51

Traditional weather stations

52

5

�

6OM[) 5 SVR UL Y Y S U YU[I L US ; SU 2=8 UT V SH N -

1.4 Problem statement

Quantifying the UHI using remote sensing now is not suitable for canopy layer heat island
research, which focuses on air temperature above the surface. Air temperature is usually
detected by traditional ground-based thermometers (Figure 5) which are located at certain
height above the ground and placed in the shade. However, due to the lack of spatial
resolution, many traditional thermometers are hard to cover rural areas or large city
nevertheless further spatial UHI research.

�

6OM[O OUT R M U[T cH Y N SUS E -F

	

�

�	

��

�	

��

	�
		
�	
�

�	
	�
�
�	
�

�	

�
�	
�	
�

�	
��

�
�	
�

�	
��
		
�	
�

�	
��
�
�	
�

�	
�
�	
�	
�

�	
��

�
�	
�

�	
��
		
�	
�

�	
��
�
�	
�

�	
��
�	
�	
�

�	
��

�
�	
�

�	
��
		
�	
�

�	
��
�
�	
�

�

	�
�	
�	
�

�

�

�
�	
�

�

��
		
�	
�

�

��
�
�	
�

�

��
�	
�	
�

�

�

�
�	
�

�

��
		
�	
�

�

��
�
�	
�

�

��
�	
�	

�

��

�
�	
�

�

��
		
�	
�

�

��
�
�	
�

�

��
�	
�	
�

��
	�

�
�	
�

��

�
		
�	
�

��

�
�
�	
�

��
��
�	
�	
�

��
��

�
�	
�

Personal weather stations

53

Crowdsourced weather data

54

Behaviour

55

15

The algorithm is based on the current point, the previous point and the next point and then
the gradient calculation. The reason consider 3 points is trying to avoid some influence
from outliers and make the classification smoother. A pseudo-code for the increase check
is shown below.

�/&3($4(#-,4��!�"�

)03�,/'(9�,/��54�!46/3,4(��46/4(5"��

,)��5!,/'(9"����5!,/'(9�
"���	���03��5!,/'(9�
"����5!,/'(9"���	���03��5!,/'(9�
"����5!,/'(9�
"���	����

�/&3($4(#-,4��$11(/'���5!,/'(9"��

An example result (only one sensor in one day) is shown in picture below. Red dots mean
that temperature difference is increasing while blue is decreasing. Here we obtain 95 data
points (x-axis) because the raw data is updated 15 min per time and there will be 95 records
in one day. The red dots are concentrated from x=40 to x=50 and the corresponding time
is about 10:00am and 12:30pm respectively (Figure 11). To simplify the research, the
project will assume that this sensor is likely to be exposed to sun radiance during this
period of time.

6OM[T SVR U IR YYOL SV [OLL TI

The picture above only is shown one sensor in one day, however, for each sensor, the
dataset store at least 5 days data. In order to consider data collected from different date,
I have introduced a concept called “increase possibility”. For instance, for sensor A at
1:00 am, the increase/decrease checks in the 7 days are:

I Y

OTI Y

LR

)4=A>@�����44����5����2�� � �0B4�����	��	���

Potential locations

56

16

-��	����8=2@40A4����	����342@40A4���	����8=2@40A4���	����342@40A4���	����8=2@40A4��

��	����342@40A4���	����8=2@40A4.� �

The increase possibility at 1:00 am for sensor A will thus be

8=2@40A4�30GA���0;;�30GA������������
���

Only the time where the increase possibility is bigger than 0.5 will be consider as “the time
influenced by solar radiance”. The result here will be used in Section 4.5.

4.3 Generating potential locations of Netatmo stations

Although the coordinate of each station is given in the dataset, it’s actually a rough location
info and a real location of a station could be inside a buffer of the given location. The radius
of the buffer is the accuracy of the given location. The project selects 15m as radius, which
was chosen according to the accuracy of mobile phone GPS.

However, resection of the buffer is buildings and transportation areas. All temperature data
used in this project are collected from the Netatmo station outdoor module (it is possible
that some users use outdoor module inside, but they are removed in pre-process because
temperature inside room will not change too much with time, thus they cannot pass through
the filter) so the part(s) where the buffer covers buildings will not be considered when
generating potential locations. Likewise, no users will put sensors in a transportation area.
The buildings’ and roads’ footprints will be extracted from the BGT dataset (The Basic
Registration of topography map of the Netherlands. In the BGT, objects such as buildings,
roads, water, railway lines and greenery are defined and classified). Then points are
generated with same distance between them (Figure 12).

�

�

�

6OM[= OTIOVR U M T VU T O R RUI OUT

���� �

30$'�

�00513,/5�
����%6,-',/*�

�00513,/5�

�0/453$,/('�%6))(3�

�05(/5,$-�-0&$5,0/�

�,7(/�-0&$5,0/�

Potential locations

57

17

4.3.1 Generating scatter points around a given location

Usually, generating scatter points using algorithm is done using two nesting loops. An
outside loop is generating points from initial point with a given distance while the inside
loop is rotating the central point with same angle from 0 to 2pi. The disadvantage of this
method is the density of points will be lager when close to the center of a circle. In the
project, this means the real location has higher possibility when close to given location
which is logical. However, the center circle would be extremely dense and if the density
close to the edge of the circle will be very low and cause may data redundancy.
Alternatively, the project creates points with evenly density inside a bounding box (length
of side is equal to the double radius), then remove points whose distance to the initial point
is larger than the radius. Both methods are shown in Figure 13.

6OM[(= OTIOVR UL I OTM YI VUOT Y]O NOT IO IR

R L bIUSSUT S NU 0 OMN / V UP I UV OUT

4.3.2 Removing points inside polygons

Due to the thousands of building and road polygons in the Hague, the calculation of
whether each point inside each polygon will consume very long time. Two methods are
developed here in order to lower the calculation complexity.

The first method is called Tiling. All polygons in the Hague are divided into several square
tile sand each of them has its ID. Depending on the given sensor’s location and bounding
box of tiles, only one tile will be used for further calculation. One example is shown below.

Potential locations

58

19

Ideally, only the nearest polygon needs to be checked inside or outside. However, since
the definition of distance between a polygon and a point is vague and the average distance
is not true distance, the method could cause failure if return only a few nearest polygons
are returned. An example is shown above. Red arrows and blue arrows represent the
distances to each polygon’s vertices respectively and all red arrows are longer than all blue
arrows which means that the average distance of the rectangle is larger than the square.
Actually, it’s not going to happen no matter what the distance means because the point is
already inside the rectangle. Besides, the polygon’s shape in the Hague could be much
more complex than the example mentioned above. According to this, this method needs
to return 20 even more polygons for inside/outside test. One result (radius = 25m and
density = 1m) is shown in Figure 16. It’s noticeable that the given sensor location is inside
the building, hence being removed.

6OM[Y[R UL M T OTM VU T O R Y TYU RUI OUTY

D RRU] V Y H[OR OTMY T I T V Y TYVU OUT Y

Skyview computation

59

20

4.4 Computing sky view (dome) and solar parameters

In order to know, for each potential location, when it receives solar radiance, sky view and
sun position will be computed. Dome reconstruction is done by Urban Horizon project [24]
and this project will add functions to their work to calculate the sun’s position and the time
a position receives direct solar radiance. The principle is to know when then sun will not
be blocked by grey (buildings) and green (vegetation) part in Figure below.

6OM[, R L / UT Y R I OUT VUOT 0

OMN / US U[V[L US A H T 7U O UT V UP I T U TM VUOT S TY Y[TaY VUYO OUT

4.4.1 Solar parameters

In order to know the Sun’s position in the dome, the elevation angle as well as the
azimuth angle must be known. The solar zenith angle is the angle between the zenith
and the center of the Sun's disc. The solar elevation angle is the altitude of the Sun, the
angle between the horizon and the center of the Sun's disc [30].

6OM[- 5R OUT TMR T OS[N TMR UL Y[T E(F

The elevation angle and azimuth angle cannot be computed directly from the local time
and coordinates but are available from other intermediate parameters: hour angle,
declination, solar time and equation of time.

Analysis

60

23

An example of the merging result is shown in Figure 20. The white dashed line means
Sun’s position every 15 minutes (same as sensor recoding frequency) between sunrise
and sunset. The corresponding solar influence result is:

{5.5: 'not influenced', 5.75: 'not influenced', 6.0: 'not influenced', 6.25: 'not influenced', 6.5:
'not influenced', 6.75: 'not influenced', 7.0: 'not influenced', 7.25: 'not influenced', 7.5: 'not
influenced', 7.75: 'not influenced', 8.0: 'not influenced', 8.25: 'not influenced', 8.5: 'not
influenced', 8.75: 'not influenced', 9.0: 'not influenced', 9.25: 'not influenced', 9.5: 'not
influenced', 9.75: 'not influenced', 10.0: 'not influenced', 10.25: 'not influenced', 10.5:
'influenced', 10.75: 'influenced', 11.0: 'influenced', 11.25: 'influenced', 11.5: 'not influenced',
11.75: 'influenced', 12.0: 'influenced', 12.25: 'not influenced', 12.5: 'influenced', 12.75:
'influenced', 13.0: 'influenced', 13.25: 'influenced', 13.5: 'influenced', 13.75: 'influenced',
14.0: 'influenced', 14.25: 'not influenced', 14.5: 'influenced', 14.75: 'influenced', 15.0:
'influenced', 15.25: 'influenced', 15.5: 'influenced', 15.75: 'influenced', 16.0: 'not influenced',
16.25: 'influenced', 16.5: 'influenced', 16.75: 'influenced', 17.0: 'influenced', 17.25:
'influenced', 17.5: 'influenced', 17.75: 'influenced', 18.0: 'influenced', 18.25: 'not influenced',
18.5: 'not influenced', 18.75: 'not influenced', 19.0: 'not influenced', 19.25: 'not influenced',
19.5: 'not influenced', 19.75: 'not influenced', 20.0: 'not influenced', 20.25: 'not influenced',
20.5: 'not influenced', 20.75: 'not influenced', 21.0: 'not influenced', 21.25: 'not influenced',
21.5: 'not influenced', 21.75: 'not influenced'}

(xx.25 = xx:15; xx.5 = xx:30; xx.75 = xx:45; xx is hour)

6OM[: MOTM N Y O] T N Y[TaY VUYO OUT

Results

61

31

The statistics distribution of the similarity result of all 185 sensors can be seen in Figure
25. The bar is shown the number of sensors at each similarity interval which ranges
from 0.061 to 0.961 and the width of each interval is 0.1. The number of sensors goes
up with the similarity and reaches the maximum at [0.661, 0.761], where 59 sensors
are, then decrease sharply to 33 at the next interval and only 3 sensors are in the
highest similarity interval.

6OM[4OY OH[OUT UL YOSOR O Y[R

There are several explanations for the low similarity result. For example, it is quite possible
that not all stations are expose to solar radiance and records from those who stay in
shadow do not match the average temperature pattern, so the fake increase temperature
pattern will appear in the calculation process. If this kind of fake pattern cannot fit the solar
simulation result, then the similarity will accordingly be very low.

Another explanation is that the potential location failed to cover the real location of the
stations. Usually, stations are placed in the garden behind their house, a place outside
buildings and transportations areas and this is the principle how the project create potential
location. However, this could be wrong if users live in an apartment not a detached house:
apartment usually will not have a garden and even if, it would be more reasonable for users
putting stations in their balcony. Also, in the BGT shapefiles, apartment polygons are very
close to transportation area polygons and this means that there is not much space for
creating potential locations and even more hard to guarantee their reliability.

A corresponding example is shown below (Figure 26): the MAC address of the sensor is
70:ee: 50:04:76:90 and its similarity result is 0.115.

Experiment

62

38

5.2.2 Experiment by sample Netatmo weather station

This section aims to introduce a sample Netatmo weather station for experiment. The
experiment will place the station at a known place and validate the relocation process by
checking whether the adopted algorithm is able to find the sensor’s location. The new
location is in Hooikade 26, 2627 AB, Delft on a 0.5 meter-height table in the garden behind
this building. Figure 31 is shown the details of the sensor’s location.

� �

6OM[(RUI OUT UL V OS T R Y TYU Y RRO OS M Y L US MUUMR S V

The experiment started on 13th, May until 19th, May, 2019. The weather condition of this
period is shown in the table below. The temperature records collected from the
experimental station shows very abnormal record frequency in the sever and the reason
for this is still unclear. Alternatively, the records are download from the private station
management portal. Other data in the Delft still comes from its public API. Private portal
provides weather data every 5 minutes while 15 minutes in the sever, thus the experimental
station record frequency is switched into 15 minutes manually.

Experiment

63

40

6OM[((9UI OUT UL N V OS T R] N Y OUT

M T/ L [R RUI OUT0 HR[/ I RI[R OUT RUI OUT0 RRU]/ R RUI OUT

VUR MUTY H[OR OTMY T V[VR VUR MUTY TYVU OUT Y

The final result of this experiment is shown in Figure 33. The 3 points represent 3 locations
of the weather station (default location; calculation location; real location). The sensor has
been located into the road in front of the building (the sensor’s location is collected inside
the building when the station is setting up as most of users did). The calculation location is
in the backyard, which is showing a more reliable result and also closer to the real location.
However, there still is an around 4 meters gap between the result and real location. The
gap may result from the imperfect weather condition in the experiment period: not all days
are fully sunny and clear.

Overall, this validation experiment is shown a real example of fluctuated air temperature
and how it will be influenced from solar radiance. When the station is exposed to sun in a
long time, heat will accumulate at the station and cause air temperature difference more
than 1-2 ℃	as Netatmo mentioned. Although the real situation does not coincide with
experimental result, the location difference is reduced from 16 meters to 4 meters roughly.
Therefore, in terms of this experiment, the methodology adopted by the project is helpful
to improve the station’s location accuracy.

• Motivation: automate some (simple)
building permit checks using a 3DCM

• Formalisation of regulations

• Store necessary data in CityJSON
extension

• Automate some checks (car + bicycle
parking)

64

MSc thesis in Geomatics

Automatic building permits checks
by means of 3D city models

Jialun Wu
2021

Formalisation of regulations

65

New attributes to store

66

CityJSON extension

67

5 Experiments and Results

Table 5.1: The meaning of extended building attributes
Attributes Meaning Source

+permit::non residential

Whether the building is a residential building. Its value range is 0 to 2.
0 - residential building
1 - non-resident building with a single function
2 - non-resident building with a dual function

BAG

+permit::groundHeight Height above ground level 3D BAG
+permit::total area Gross floor area (GFA) of building BAG
+permit::discount factor Parking quantity discount Calculated results
+permit::min bicycle parking spaces Minimum parking spaces for bicycles Calculated results
+permit::min car parking spaces Minimum parking spaces for cars Calculated results
+permit::function1 The first function of the building BAG
+permit::function2 The second function of the building, if not, it can be ignored BAG

necessary information for permitting. Therefore, in the following UML module, we define the additional
information of the City Objects necessary for the parking standard permit checks as the attributes of the
City Objects, and specify the coding format of each attribute. Next is the detailed information explana-
tion of each module:

• Extension of Building.

Figure 5.2: UML diagram of Building

This module contains the basic detailed information of buildings that are necessary for the analysis
of building permission checks in urban areas and extends the existing modules. The additional
information is related to parking standard or stores some analysis results. Figure 5.2 shows the
UML model of the building module, here the building is extended by directly adding new attributes
with prefix ’+permit’. Attribute ’measuredHeight’ is the measured relative height of the building
that already defined in the model. Here, according to the formalization of parking standard, we
add 8 new attributes to ’Building’. The meaning of each attributes is described in table 5.1.

• Extension of Room.

36

CityJSON extension

68

5.2 Results of building permit checking of parking regulation

attributes to them. In the real situation, the data regarding the new buildings are likely supposed to
come from the conversion of BIM delivered as part of a digital building permit from the building de-
veloper. The attribute non_residential indicates the function and purpose of the building. 0 repre-
sents a residential building, 1 represents a single-function non-residential building, and 2 represents a
multi-function non-residential building. The attribute discount_factor indicates the coefficient of the
parking quantity discount that the building can get after the traffic buffer analysis. Then the attributes
min_bicycle_parking_spaces and min_car_parking_spaces respectively represent the results of the
calculated minimum parking quantity. In the code, we first calculate the ”discount coefficient” of each
building. This is done by judging the relative position of the different discount areas in the building
and the buffer map, using the sjoin function in geopandas in python to complete the discount coeffi-
cient calculate. Then, calculate the results according to the formulas for the buildings in three different
situations. The calculation basis for 12 different functions comes from the table B.3.

Here, use one new building as example. Figure 5.8 shows the calculation results of car parking spaces
based on test data which store in a CityJSON file. The attributes suggest it is a non-residential building
of ’catering I’ use, its area is about 1372 square meters. It is calculated that its discount factor is 0.95.
Therefore, the calculated number of parking spaces for bicycles and cars is the result of multiplying by
0.95. It shows that the minimum number of bicycle parking spaces is 117 and the minimum number
of car parking spaces is 78. Therefore, as long as the number of parking spaces actually built is greater
than these two numbers, it can pass the parking standard building permit checks. Figure 5.9 shows the
results displayed in QGIS using plugin ’Load CityJSON’.

Figure 5.8: Result of an new building of catering use

41

Generating required info

69

Programming checks

70

Results: tool

71

4.2 Overview of experiments

commands for validation
c j i o path of the f i l e v a l i d a t e −− folder schema path of extens ion

v a l 3 d i t y path of the f i l e

4.2.5 GUI program application

To reproduce the experimental results, we developed a GUI program as a tool for the automation of
building permit checking. In this program, the user only needs to provide the input data and the
specified output file path and it will automatically complete the entire building automation inspec-
tion process. During the process, the corresponding attributes are extracted from the input datasets,
the minimum car parking space and the minimum bicycle parking space are calculated according to
the formalized results of the regulation, and finally they are stored in a file of CityJSON format. The
program will also validate the file. Finally, the output result can be visualized through Cesium-cityjson
or open in QGIS. The UI of this program is shows in figure 4.5.

Figure 4.5: Components of UI

For the work steps mentioned above, the specific steps of regulation implemented in the program can
be summarized as the following 7 steps:

1. User will input the datasets which is needed for the calculations

2. The computer filters buildings based on the building function’s properties.

3. The computer check the exemptions cases, accumulates the total living area of the building through
the room area information and check if it is in the traffic station buffer map.

4. According to the formula, calculate the minimum bicycle parking space for each building.

5. According to the formula, calculate the minimum car parking space for each building.

6. Get the calculation results, and the computer stores the results in a new CityJSON file with exten-
sions.

33

• Motivation: use 3DCM for space heating
demand calculations

• Develop CityJSON extension with all
required information

• Implement space heating models

• Use implementation to improve
extension design

72

73

3 Methodology

This section presents the details of the methodology used in this thesis. As shown in Figure 3.1,
the methodology consists of two interrelated parts: the development of the CityJSON Energy Ex-
tension, and the space heating demand calculation. In the rest of this section, the main parts of the
methodology are explained in detail. Firstly, Section 3.1 explains the main considerations in creat-
ing a semi-direct translation from the Energy ADE to a CityJSON Energy Extension. Secondly, the
validation process and the used tools are described in Section 3.2. Then, the calculation method for
the use case, space heating demand of buildings, is described, and the needed input parameters
are determined in Section 3.3. Finally, Section 3.4 explains the methods used to improve the initial
CityJSON Energy Extension to make it more efficient and fully compatible with the use case.

Figure 3.1: Overview of the methodology. Grey: main steps, blue: intermediate outputs, orange:
final output of the thesis.

20

Storing new (complex) geometries

74

2 Related work

Figure 2.7: Topologically adjacent buildings (left) and the party walls between them (right) as
stored in the 3D city model. Figure from Agugiaro [2016b]

Later studies make use of the CityGML Energy ADE to calculate and store the input parameters,
which are then used in energy demand simulations. Rossknecht and Airaksinen [2020] use the En-
ergy ADE on both the input and output sides of the calculation. The energy-related input parameters
(type of usage zones, number of occupants, heating status, etc.) are first stored in the already ex-
isting 3D city model in CityGML with the Energy ADE. Then, these parameters are used for energy
demand simulations, and the resulting monthly space heating demand values are stored with the
EnergyDemand class of the Energy ADE for each building.

Similarly, Skarbal et al. [2017] use the Energy ADE to store additional data about buildings to be
used in the energy demand calculation. While some of this data is calculated directly from the 3D
city model, such as the footprint area and gross volume, the data coming from external sources is
integrated as well, such as the solar irradiance values and building typologies. Therefore, it can be
concluded that the Energy ADE is utilised successfully to store heterogeneous energy-related data
from various sources in a single 3D city model.

2.5.2 Current energy simulation software with 3D city models

There are numerous energy simulation tools available with distinct focuses and considerations. For
instance, certain tools such as EnergyPlus [Crawley et al., 2001], TRNSYS [Beckman et al., 1994] and
SIM-VICUS 6 are generally used for performing detailed simulations on building level. These tools,
therefore, require highly detailed and precise input data about the building, such as the geometry,
building physics parameters, and HVAC equipments, to be able to run the simulation. On the other
hand, certain other software, such as SimStadt and CitySim, can be used for energy simulations on
city scale instead of focusing on single buildings. Since a city scale energy demand calculation is
within the scope of this thesis, detailed information about SimStadt and CitySim is provided in the
following paragraphs.

Firstly, SimStadt was developed at HFT Stuttgart to help authorities make energy-related de-
cisions by performing energy simulations, such as solar and PV potential analysis and energy de-
mand simulations [Scartezzini et al., 2015]. The software accepts CityGML files as input data, while
the missing additional information, such as building physics parameters and weather data, can be
retrieved from SimStadt’s pre-built libraries [León-Sánchez et al., 2021]. Alternatively, SimStadt ac-
cepts additional data provided by the user, as long as the data is created in a compatible format for
the software to read and process. Furthermore, SimStadt uses a steady-state method based on the
German standard DIN V 18599 for automatically calculating monthly energy demand of buildings

6https://www.sim-vicus.de/

17

New attributes

75

New attributes

76

5 Implementation

1 "extraCityObjects": {
2 "+UsageZone": {
3 "allOf": [
4 {" ref":" cityobjects.schema.json#/

_AbstractCityObject "},
5 {
6 "properties": {
7 "attributes": {
8 "type": "object",
9 "properties": {

10 "usageZoneType": {
11 "type": "string"
12 },
13 "floorArea": {...}
14 }
15 ...
16 }

"Usage1": {
"type": "+UsageZone",
"attributes": {

"usageZoneType": "residential",
"floorArea": {

"type": "netFloorArea",
"value": {

"value": 100,
"uom": "m2"

}
}

}
}

Schema 5.1: Definition of the UsageZone CityObject in the Extension schema (left), and the
exemplary JSON object with example data (right).

5.1.2 New attributes to existing City Objects

CityJSON’s Extension mechanism allows the addition of new attributes to existing CityObjects with
the ”extraAttributes” member, which supports both simple and complex attributes with varied data
types. Therefore, all new attributes defined in the Energy ADE KIT profile for the existing City-
Objects (AbstractBuilding and CityObject) were defined with this method. An example is given in
Schema 5.2, where the existing Building CityObject is extended with new attributes as defined in the
Energy ADE KIT Profile.

1 "extraAttributes": {
2 "Building": {
3 "+buildingType": {...} ,
4 "+constructionWeight": {...} ,
5 "+volume": {...} ,
6 "+floorArea": {...} ,
7 "+heightAboveGround": {...}
8 }
9 }

"Build1": {
"type": "Building",
"geometry": [...] ,
"attributes": {

"+buildingType": "singleFamily",
"+constructionWeight": "heavy",

}
}

Schema 5.2: Extra attributes defined for the Building CityObject (left), and how it is implemented
for a Building object called Build1 (right).

5.1.3 Creating new non-City Objects

The Energy ADE KIT profile contains not only new CityObjects, but also new classes that are not
derived from the CityObject class of the core data model, but from various other stereotypes, such as
⌧ featureType �. However, a direct mapping of these classes to the CityJSON Energy Extension was
not possible, since the Extension mechanism of CityJSON only supports the addition of new objects
in the form of CityObjects. Therefore, a preliminary design decision had to be made in this stage, and
it was decided to create non-CityObjects under the ”extraCityObjects” member, together with the

43

New City Objects

77

5 Implementation

newly defined CityObjects. Since non-CityObjects do not inherit attributes and relationships from
the CityObject class, these objects were defined without using the ”allOf” keyword to reference
AbstractCityObject from the core data model of CityJSON. An example to this is given in Schema 5.3,
where the EnergyDemand class that is derived from gml:AbstractFeatureType is defined with the
”extraCityObjects” keyword.

1 "extraCityObjects": {
2 "+EnergyDemand": {
3 "type": "object",
4 "properties": {
5 "type": {...} ,
6 "attributes": {
7 "type": "object",
8 "properties": {
9 "energyAmount": {...} ,

10 "endUse": {...} ,
11 "maximumLoad": {...} ,
12 "energyCarrierType": {...}
13 }
14 ...
15 }

"Demand1": {
"type": "+EnergyDemand",
"attributes": {

"endUse": "spaceHeating",
"energyCarrierType": "naturalGas",
"energyAmount": "...", //ID of

TimeSeries object
"maximumLoad": {

"value": 250,
"uom": "kWh/m2"

}
}

}

Schema 5.3: EnergyDemand, a non-CityObject, defined with the ”extraCityObjects” keyword (left),
and an exemplary JSON object with the corresponding attributes (right).

Similarly, all objects with the ⌧ type � stereotype are derived from gml:AbstractGMLType, such
as the classes of Time Series, Schedule and Weather Data in the Energy ADE KIT Profile, and were
therefore mapped as ”extraCityObjects” as well (Schema 5.4). Even from this early stage, it could be
argued that defining CityObjects and non-CityObjects together with one keyword was not the most
ideal solution, since this could result in confusion about the defined objects and their properties.
However, since this restriction is related to the Extension mechanism of CityJSON, an alternative
solution was not possible.

1 "extraCityObjects": {
2 "+WeatherData": {
3 "type": "object",
4 "properties": {
5 "type": {...} ,
6 "attributes": {
7 "type": "object",
8 "properties": {
9 "weatherDataType": {...} ,

10 "values": {...} ,
11 "position": {...}
12 }
13 ...
14 }
15
16

"OutdoorTemperature": {
"type": "+WeatherData",
"attributes": {

"weatherDataType": "airTemperature",
"values": "RegularTimeSeries1",

//ID of TimeSeries object
}

},
"RegularTimeSeries1": {

"type": "+RegularTimeSeries",
"attributes": {

"values": [2.61, 4.82, 5.91, 9.32,
14.73, 16.12],

...
}

}

Schema 5.4: WeatherData object, defined with the ”extraCityObject” keyword in the Extension
schema, and an examplary JSON object, as well as the referenced Time Series object (right).

44

Test data

78

4 Study area and datasets

4.2.1 3D city model of Rijssen-Holten

In this thesis, the 3D city model of Rijssen-Holten is used as the main data source to acquire the
required input data for space heating demand calculation. The 3D city model is a testbed for energy
applications, currently under development at the 3D Geoinformation Group at TU Delft. In this
model, geometric, semantic, and topological properties of 3318 buildings in the study area are stored
in XML-based CityGML format (Figure 4.3). While 3290 of these are stored as single-part buildings
as CityGML Building objects, 9 multi-part buildings are present as well in the dataset, resulting in
extra 19 buildings modelled as CityGML BuildingParts.

The buildings are available with two types of geometries: an LoD0 geometry to represent the
building footprints, and an LoD2 geometry which includes a more detailed representation of the
building with its semantic surfaces. In the latter, each building’s surfaces are modelled as Bound-
arySurfaces of CityGML, namely WallSurface, RoofSurface, and GroundSurface. In addition to this
classification, the WallSurfaces between topologically adjacent buildings are instead modelled as
ClosureSurface objects to easily differentiate the party walls from the rest. Due to the complex nature
of the calculation and the dependency on highly detailed parameters, the LoD2 geometries are used
in this thesis for obtaining data from, and storing energy-related information in the 3D city model.

Each building contains a number of attributes to provide information about its specific proper-
ties. While some of these are added with existing CityGML attributes from the Building module
(e.g. year of construction, class, function), additional generic attributes are used to include the type
of properties that can be used in energy applications (e.g. number of adjacent buildings, volume).
Similarly, each BoundarySurface is enriched with energy-related generic attributes, such as the area,
azimuth, and orientation of the surface. An overview of all Building and BoundarySurface attributes
are presented in Table 4.2.

Figure 4.3: The 3D city model of the study area: a subset of Rijssen-Holten in the Netherlands.

Pre-processing of the 3D city model

A number of pre-processing steps were taken to prepare the dataset to be used in space heating
demand calculation. First, the 3D city model was used to calculate two required parameters, namely
the perimeter of buildings and the slope of all surfaces, to be used in Equation 3.7 and Equation 3.11,
respectively. This was done on a Safe Software FME Workbench, where, for each building, the

35

Results: heating energy demand

79

6 Results and Analysis

calculation includes numerous non-geometrical factors, such as building usage and occupant be-
haviour, it can be directly seen from the figures that the building size is a significant factor in the
determination of energy demand. While large buildings in the center mostly have a higher energy
demand, the buildings in the purely residential area have lower and similar energy demand values,
considering that their size and geometry are comparable, which, in the end, have an impact on the
number of occupants and overall usage as well. Furthermore, it can be discussed that the adjacency
between residential and non-residential buildings may have contributed to higher energy demand
values, since the energy loss through the shared thermal boundaries are mainly considered in the
center, compared to the residential area, where an energy loss between two residential buildings are
neglected.

(a) (b)

Figure 6.7: Energy demand (kWh) in the month January (a) in the center and (b) in a residential
area in Rijssen.

While a visual inspection of the overall distribution of energy demand values provides valuable
insight, it is crucial to analyse the impact of specific characteristics of buildings on the resulting
energy demand. The first of these analyses focuses on the position of buildings, where Figure 6.8
demonstrates a corner and a middle building with type Terrace House, and Table 6.2 shows their
characteristics as well as their energy demand in the month January. It can be seen that the main
difference between the buildings is their position, while their other characteristics, such as year of
construction, building type, building class, usable area and volume, are either the same or similar.
Under these conditions, the corner building has a higher energy demand, since more of its surfaces
are exposed to outside air for heat losses, compared to the middle building.

(a) (b)

Figure 6.8: Examples of corner (a) and middle (b) buildings with the type Terrace House.

61

• Motivation: unreliable or non-existent
information in IFC models

• Automatically create shapes of rooms,
storeys and apartments

• Built on IfcOpenShell

80

Automatic building feature
detection and reconstruction
in IFC models
Jasper van der Vaart
2022

MSc thesis in Geomatics

Current IfcSpaces

81

1. Introduction

(a)

(b)

Figure 1.1.: An example of an issue that could be created when relying on IFC data that may
not be correct. (a) shows the outlines of a space bound by walls (left). An incorrect space
object can be seen in the middle, on which a valid relationship space boundary is based
(right), however this is not correct due to the space object being incorrect. (b) shows the
desired situation where the space object complies with its surrounding walls.

One could reason that the reliability and accuracy of the data stored in IFC files has to be
ensured by the original creator of the IFC file. Thus, the original Building Information Mod-
eling (BIM) model has to be repaired and/or the model creators should be better educated.
However, this is a partially flawed idea due to the significant amount of errors that are either
hidden from the user and/or are created by the software packages when exporting the mod-
els [Katsigarakis et al., 2019; Arroyo Ohori et al., 2018]. These are often errors that the user
has no direct control over and can be completely unaware of. Aside from this, having au-
tomated software that functions on sub-optimally made IFC files allows firms to more easily
share models even though their BIM expertise is limited.

Although the chances that the automated extraction of reliable data from unreliable IFC files
opens up, it seems that it has not been extensively covered in prior research. The small subset
of research that does cover a form of automated repair or reconstruction often presume an
idealised but unreal situation. This research often covers singular errors or only take format
and non-standard use into account. However, in practice, a variety of different errors occur,
often having effect on each other. These errors range from minor intrusive ones, e.g. presence
of small wall clashes and unreferenced features1, to heavily interoperability limiting ones,

1Note that although the presence of a small number of unreferenced features could pass by without notice. Larger
numbers of unreferenced features does bloat the already large file size of the IFC format resulting in, among other
things, reduced interoperability.

2

Computing storeys

82

3. Methodology

(a) (b)

(c) (d)

(e)

Figure 3.3.: Visual summary of the storey elevation extraction process. (a) is the original
situation. (b) IfcSlab objects with small top face areas are ignored. (c) neighboring slabs
are merged. (d) unique elevation values are extracted. (e) the lowest elevation values from
groups of small elevation differences are picked.

14

Computing storeys

83

3.2. Detection of storey elevations and the labelling of objects

Figure 3.4.: An example of the vertex that is used to extract the z-value of a single Ifc-

Slab/IfcRoof grouping, marked in blue. The highlighted in blue vertex is the lowest possible
vertex of all the top face vertices of all the objects in one group. In this particular case there
are three other options that have the same z-value, marked in gray. If multiple vertices
are present with the same z-value the first vertex in the data structure with the desirable
z-value is taken.

All the IfcSlab and IfcRoof objects are initially collected from an IFC file. After the collection
this pool of objects is filtered on their top face area, see Figure 3.3b. Small slab objects are
ignored (10% of the median of all IfcSlab and IfcRoof top face areas). Doing this results in
three benefits:

• It reduces the chance of elevations being evaluated of objects that do not represent floor-
ing or roofing.

e.g. incorrectly made furniture models or poles and beams that are incorrectly classified
as IfcSlab objects.

• It reduces the chance of elevations being evaluated of objects that do represent flooring,
but are floors that should not be considered on their own storey.

e.g. balconies and the intermediate landings between stairs.

• Using the median instead of the average to filter the objects reduces the chances of
incorrect influence when a small number of extremely large top faced IfcSlab/IfcRoof

objects are present in the model.

The preprocessing starts with the merging of IfcSlab/IfcRoof objects that are neighboring into
singular shapes, see Figure 3.3c. This results in horizontally planar IfcSlab/IfcRoof objects be-
ing seen as one group. This is advantageous for the efficiency of the following computations.
Although this is an effect that the process has, it is not the major goal of this step. The major
goal is merging the slanted IfcSlab/IfcRoof objects that rest against each other into one single
group. This enables us to evaluate complex roofing structures as a one shape instead of a col-
lection of shapes. The pairing of neighboring IfcSlab/IfcRoof objects is done by evaluating the
length of an edge of an IfcSlab/IfcRoof object and the length of the begin point of that edge, to
the vertex of a potential neighbor, to the end point of that edge. If this distance is sufficiently
close to the length of the edge, the objects are considered to be neighbors.

For each of the resulting groups, the z-value is extracted. This z-value is taken from the single
lowest possible vertex of all the top face vertices of all the objects in one group, see Figure

15

Computing storeys

84

3.3. Detection and reconstruction of rooms

Figure 3.6.: Visual summary of the storey sorting process of an object. The object (the top
staircase in this example, highlighted in blue) is to be assigned to a storey. The distance
from every storey to the base point of the object is measured, the storey with the smallest
positive distance is considered to be the correct storey at which this object is located (high-
lighted in blue). The distance is positive when the storey elevation is lower than the base
point while the distance is negative when it is higher.

this 20 centimeter translated location as a base point resolves the issues that can occur when
objects are slightly misplaced due to rotations. An example of this are columns that are placed
diagonally, which can create a situation where the lowest point is located below the floor it
actually rests upon.

There are some objects processed in a slightly different way. Firstly, the IfcSlab and IfcRoof

objects do not use the z-value of the base point to compute the z-distance to the storey but
the lowest point of the top face of the object. This is the same point that is used to get the z-
value of a IfcSlab/IfcRoof object, see Figure 3.4. Taking this z-value results in the IfcSlab object
being matched to the storey with the same (correct) level instead of one storey too low. The
IfcWall and IfcStair objects use points to compute the z-value that are a 1/3 of their total height
translated up from the base point. This enables reoccurring exceptions to be matched to the
correct storey. For example: walls comprising the facade often start lower than the height of
the storey they belong to or a IfcStair object that occasionally starts below the elevation of the
storey they belong to.

3.3. Detection and reconstruction of rooms

This section is split in three parts. The first part will cover the correction of incorrectly clas-
sified IfcSpace objects present in the inputted IFC files. This has to be done to find the IfcSpace

objects that have to be replaced/corrected. The second and central part of this section will
cover the creation of geometry that represents a room. The third part will cover the recovering
and connecting of semantic data to this newly created room geometry.

17

Computing storeys

85

3. Methodology

Figure 3.5.: The isolated 8th floor of the facade model of the Boompjes. It can be clearly seen
that this model has no data that can enable the software to detect the storey elevation of
this floor.

3.4. After ordering this list, it will represent a rough storey elevation list. This list is however
still filled with noise that has to be removed. Firstly, all the duplicates are removed, only
unique values are allowed to be present in the storey elevation list, see Figure 3.3d. After this
step, the elevations with a small difference are grouped. From every group of closely lying
elevations the lowest value is taken. The resulting elevation list is considered to be a close
approximation of the storey elevation list, see Figure 3.3e.

When multiple files are used to represent a building, the storey approximation process will
only be required to evaluate the construction model. This is due to the expectation that a con-
struction model encompasses the entire building and that it includes all the constructional
IfcSlab/IfcRoof objects representing floors and roofs. The storey elevation list resulting from
the construction model is afterwards forced upon the other files, completely discarding the
original elevations and other features present in these models. This creates a situation where
there is no deviation from the number of storeys and their elevations between files. Aside
from this consistency across files, it also enables processing of files that do not have the re-
quired data present to enable an accurate approximation of the storey elevations. This is often
the case in interior or facade models, see Figure 3.5.

There should always be an extra option that bypasses the approximation of the storey eleva-
tions. If the method does not correctly process the data present in the IFC file, it should not
influence the following processes.

3.2.2. The sorting and labeling of objects

After the storey elevations are approximated and updated within the IFC files, it is possible
to sort the objects present in each file into the new storeys. This is done by taking the z-value
of a base point of each object and measuring the z-distance from that object to every storey
elevation. The storey where the z-distance from elevation to object base is the smallest while
still positive is considered to be the storey at which the object is placed. The object will be
labelled with this storey number. For a visual explanation see Figure 3.6. For most objects
this base point is the lowest point of the object offset by +20 centimeters, If the object is small
(less than 1 meter in height) the lowest point of the object is taken without this offset. Taking

16

Computing rooms

86

3. Methodology

(a) (b)

(c) (d)

(e) (f)

Figure 3.8.: The steps taken when creating a rough room shape. (a) the floor plan of the input
IFC model. (b) the room bounding geometry (highlighted in blue) is filtered from the input
file. (c) the approximated smallest bounding box (highlighted in blue) is created around
the room bounding geometry. (d) the smallest bounding box is rescaled and populated
with voxels (highlighted in blue), note that for clarity a large voxel size is chosen. (e) the
voxels that intersect with the room bounding geometry are marked as intersecting voxels
(highlighted in blue). (f) The first room is grown (highlighted in blue) until no potential
voxels are left for this room.

20

Computing rooms

87

3. Methodology

(a) (b)

(c) (d)

(e)

Figure 3.12.: The steps taken when going from a rough room shape to a refined room shape
from a top down plan view, the gray outlines are wall objects. (a) the rough room shape
with the intersecting voxels marked in blue and the point that is known to be in the room
indicated with a blue x. It can be seen that the room grows into the intersecting voxels.
(b) the resulting bounding box of this rough room shape in blue, it can be seen that it does
not encapsulate the entire actual room shape. (c) the bounding box is scaled up to reduce
the chance of partial encapsulation. (d) the result of the splitting process, where every blue
area is a solid that could represent the room shape. (d) the final room shape that is found
by testing if earlier found point (the blue x in (a)) fell inside of the solid.

24

Computing rooms

88

3. Methodology

(a) (b)

Figure 3.13.: An example of simplification by selective IfcOpeningElement application. (a)
shows the normal application of IfcOpeningElement objects. A simple wall is reconstructed,
the IfcOpeningElement objects are found and they are all applied to the wall object. This
results in a fairly complex wall shape where the openings are filled with (often) complex
objects. (b) shows the method applied for the room refinement process where, initially, a
simple wall is constructed and its IfcOpeningElement objects are found. Only now it is tested
if these IfcOpeningElement objects encompass another (room bounding) object. If they do
not they are applied to the simple wall shape. This results in a more simple wall shape and
avoids the need to use more complex shapes (for example the shapes of IfcWindow objects)
to reconstruct the room geometry.

26

Computing rooms

89

3.3. Detection and reconstruction of rooms

(a) (b) (c)

Figure 3.14.: An example of simplification by bounding box creation. (a) shows a complex
IfcDoor object. (b) shows this complex object overlaid with its oriented smallest bounding
box. (c) shows the resulting bounding box that is used to replace the IfcDoor geometry for
the room refinement process. The reduction of detail can be clearly seen, every side of the
door is constructed out of a single surface and the door handle has been internalized as
well.

room. If the ray length is 0 (¡ 0.0001) meters, the split object is considered to be topologically
connected to the room. If the ray is between 0 and 0.5 meter in length, it is tested if this ray
is intersected by any of the other objects that were used to split the rough room shape. If it is
not, this object is also considered to be topologically connected to the room.

3.3.3. Matching semantic data to an IfcSpace object

After the new room geometry is made, the semantic IfcSpace data has to be found and copied.
As described in 3.3.1, this data has to be copied from the original file. The stored IfcSpace

objects are classified into ”Element” and ”Complex” objects. The semantic data of the ”Ele-
ment” IfcSpace objects is used to copy. If no semantic data has been found in the file, either
due to the file having no IfcSpace objects included or due to the process having failed to collect
the needed data, the rooms will be given generic names. If the semantic data has been found,
this data is related to a point based on each old room’s shape. For every original ”Element”
room shape a central lying point is picked, this can not be the center of mass due to L, U,
or O-shaped rooms potentially having a center of mass point that lies outside of the room
geometry. These central points are then tested to see if they fall within the newly created
room geometry. If a point does, the IfcSpace object where this geometry belongs to will get the
semantic data that is bound to this point (and its original IfcSpace object). If multiple points
fall inside of the newly created room geometry, the semantic data they supply is appended
into one so no information is lost.

27

Computing rooms

90

3.4. Detection and reconstruction of apartments

Figure 3.16.: Visual explanation of the staircase to room (highlighed in blue) binding. Two
points are extracted from the IfcStair object. One is representing the connection at the base
and one at the top. If one of these points falls inside of a IfcSpace objects the staircase is
considered to be connecting to that room.

check if IfcStair objects actually connect with a room object, two base points are extracted, see
Figure 3.16. One point represents the top of the staircase and one represents the bottom. Both
of these points have been translated in a positive z-direction to float slightly higher than the
actual bottom and top of the staircase. These points are averaged in the xy-direction reducing
the chance of the point resting against a wall (or room) face. If one of these points falls within
the room, it is connecting to that room.

If a connection object is found to be connecting to a room, this room is stored as related to the
connecting object. If the connecting object already has a related room, it can be concluded that
this stored related room connects to the currently evaluated one. A connection between these
two rooms can be established. This connectivity data is collected for further processing.

If the entire room connectivity process (and the room detection process described in Section
3.3) is finished, there will be a small subset of connectivity objects that have only one single
connection. This, presumably, means that the connectivity object connects an IfcSpace object
to the outside. This connection to the outside can however be varied in nature. It can be a
front door to the garden but it can also be a door on the third floor to a balcony. The door to
the balcony does not actually connect the room to the outside. To resolve this issue a rule was
introduced: if the connecting object is located below 2 and above -0.5 meter height, it can be
marked as a connection to the outside. If not this connection is discarded.

29

Computing apartments

91

3.4. Detection and reconstruction of apartments

(a) (b) (c) (d)

Figure 3.17.: Visual representation of the apartment growing process. (a) one arbitrary leaf
node that has not yet been grouped to an apartment is selected. (b) the grown apartment
group checks if it is valid for being an apartment and if the next connecting room is an
apartment splitting object, in this case, it is not and it can grow into the next room. (c)
this process is repeated, one of the connections is to the outside and thus the apartment is
unable to grow in this direction. If the grown apartment group satisfies the set rules and
can not continue to grow further it is classified as an apartment. (d) a next arbitrary leaf
node that has not yet been grouped to an apartment is selected and grown from.

31

Results

92

5. Results & discussion

Figure 5.17.: A section of the second floor of the DigitialHub model populated with the non-
intersecting voxels representing a rough room shape. It can be seen that this rough room
has grown through a door into a second room.

Figure 5.18.: The first floor of the ON4 Building model populated with the non-intersecting
voxels representing rough room shapes. It can be seen that a subset is not occupied by
rough room shapes.

64

Results

93

5.1. Detection of storey elevations

Figure 5.1.: Section of the lower storeys of the Boompjes model. The complexity of the flooring
structure can be clearly seen.

Figure 5.2.: Example of the roof storey that is added by the tool. The gray storey elevations
were already present in the original IFC file of the DigitalHub model. It can be seen that
the roofing structure of the model has no dedicated storey elevation. This elevation, high-
lighted in blue, is added by the tool.

45

Results

94

5.2. Object to storey matching

Figure 5.10.: The merged 11th and 12th storey of the Boompjes interior model isolated from
the rest of the model.

a higher number of misplaced objects are present in the processed file. Across all the models,
there is no improvement using the original storey elevations.

The extreme value of misplaced objects in the original model of the Boompjes draws attention.
This is due to the 11th floor of the interior model. As described in Section 5.2, the 12th storey is
missing in the interior file. This results in the 11th and 12th storey being merged into the 11th

storey, see Figure 5.10. The 12th storey is absent from the interior model and the next storey
is the 13th. In theory these objects are thus not incorrectly sorted. They fall between the
bottom of the 11th and the bottom of the 13th storey. However, in practice, this is presumably
undesirable. After processing by the tool, the objects of these storeys are sorted into the
correct 11th and 12th storey. This occurs both when the newly computed storey elevations
and when the original storey elevations are used. Both inhered the storey elevations from the
construction model that has the 12th storey present.

The final columns of Table 5.5 and Table 5.6 show the amount of unclassified objects that are
present in the files after processing. Unclassified objects are not displayed when the model
is opened in a 3D viewer but are instead (completely) ignored. This is undesirable because it
essentially means that objects/data is being lost from the model. Table 5.6 shows that, when
the original storeys are used, all objects are successfully classified and no unclassified objects
are stored into the processed file. The only exception to this is the Witte de Withstraat.

5.2.3. Limitations

Similar to the detection of the storey elevations, the sorting process performs well in the
simple models. When more complexity is present in the processed model, more errors occur.
A major element at play in the errors is the already mentioned absence of an xy-domain in
the method. Objects that have their base point located higher off the ground (e.g. walls) or
objects that are located higher off the ground themselves (e.g. hanging lights or ceilings) often
get incorrectly assigned in models that have storeys that are partially overlapping in the z-
direction, see Figure 5.11. This occurs often in the lower section Boompjesmodel. The solution

53

Recommendations

• GEO5014: Geomatics as support for energy applications

• GEO5015: Modelling wind and dispersion in urban environments

• Your own MSc thesis

95

Sources of images

• [2-6]: Filip Biljecki (paper on application of 3D city models and PhD thesis)

• [9-20]: Roeland Boeters (MSc thesis and related paper)

• [21-29]: Sjors Donker (MSc thesis)

• [30-48]: Damien Mulder (MSc thesis)

• [49, 51-62]: Yixin Xu (MSc thesis)

96

Sources of images

• [50]: Anna-Maria Ntarladima (MSc thesis)

• [63-70]: Jialun Wu (MSc thesis)

• [71-78]: Özge Tufan (MSc thesis)

• [79-93]: Jasper van der Vaart (MSc thesis)

97

