3D BAG

GE01004: 3D modelling of the built environment

https://3d.bk.tudelft.nl/courses/geo1004

Department of Urbanism Faculty of Architecture and the Built Environment Delft University of Technology

The 3D BAG

3dbag.nl

A bit of background...

- Developed in 3D geoinformation group
 - Ravi Peters (building reconstruction, 3D viewer)
 - Balázs Dukai (data management, automation)
 - Stelios Vitalis and Jordi Liempt (3D viewer)
- Prior to v2 we had v1
 - Only LoD1.2
 - Used by practitioners, much feedback
- Co-developments within several research projects
 - Initial request for LoD1.3 models for Noise simulation NL

3DBAG v1

3D BAG in practice https://docs.3dbag.nl/en/overview/media/

3D BAG behind the scenes

Several components

- Reconstruction algorithm
- Automation tooling, databases
- 3D webviewer + download services

Reconstruction algorithm

Building reconstruction

Open data in the Netherlands

BAG https://www.kadaster.nl/bag

up-to-date building polygons + attributes largest extent → roofprint + underground positional accuracy 30cm

AHN https://ahn.nl

classified point cloud positional accuracy ~23cm (height and planimetric) 8-15 pts/m2 for buildings occlusion and other no-data areas

Overview building reconstruction method

Feature extraction Detected planes 2 Ŧ 13

Feature extraction

Feature extraction **Detected lines** 15

Line regularisation

Using 2-step hierarchical clustering

- 1. Based on line orientation
- 2. Based on euclidean distance within orientation clusters

(a) Detected lines

(c) Distance clustering

(b) Orientation clustering

Initial roof partition

Still many small faces

Not for exam!

Not for exam!

Graph-cut optimisation

Graph-cut optimisation

$$V_{p,q}(f_p, f_q) = \begin{cases} length(border(p, q)) & \text{if } f_p \neq f_q \\ 0 & \text{if } f_p = f_q \end{cases}$$

Smoothness term:

Edge length between adjacent faces with unequal plane label

Reduces complexity, discourages height discontinuities

Not for exam!

Final roof partition

Extrusion

Special cases

In some cases BAG footprint includes groundparts

AHN3 ground and building class

BAG footprint

Reconstruction result: roofplane fitted to groundpart

Reconstruction with groundpart detection

AHN3 ground and building class

BAG footprint

Reconstruction result: groundpart removed from output

Limitation: glass roofs

Green houses: both points on ground and on roof

AHN3 ground and building class

Heightfield

Reconstruction result

Limitation: glass roofs

Green houses: both points on ground and on roof

Current solution: Use greenhouse classification from TOP10NL, reconstruct as LoD 1.2

AHN3 ground and building class

Heightfield

Reconstruction result

Limitations: occlusion/no-data

Occlusion/no-data

Reconstruction

AHN3 ground and building class

Heightfield

Fuse two point clouds

Spherical surfaces

Are approximated with planar surfaces if sufficient point density

Effect of point density input point cloud

~2x point density

Data management

FILESYSTEM

How to tile the data?

How to tile the data?

Stats for nerds; reconstruction time

- **Buildings**: 8.138 quadtree tiles, 10 226 585 buildings total
- Point cloud: 907323 square tiles of 200x200 meters, ~600B points total
- ~45 hours on 20 CPU's (2x 2014 Intel Xeon CPU E5-2650 v3 @ 2.30GHz)

Reconstruction time **per building,** for all LoD-s, excl. I/O, milliseconds

Min.	:	1
1st Qu.	:	28
Median	:	46
Mean	:	190
3rd Qu.	:	76

What's next?

• Planned:

- Polish and open source reconstruction algorithm
- Further improve data quality
- more detailed, up-to-date point clouds
- versioning
- o 3D web API

o ...

https://3d.bk.tudelft.nl/courses/geo1004

Faculty of Architecture and the Built Environment Delft University of Technology