Applications of 3D modelling of the built environment

> GE01004:

3D modelling of the built environment

3D geoinformation
Department of Urbanism
Faculty of Architecture and the Built Environment Delft University of Technology

Other applications

- Energy demand estimation (and potential for retrofitting)
- Visualisation (eg for gaming, tourism, navigation, etc)
- Computational fluid dynamics (eg for wind speeds, air quality, effects on buildings, etc)
- Shadow casting (eg for building permits, visibility analysis, improving energy demand/ solar potential calculations, etc)

4 MSc Geomatics theses

- Motivation: create (rough) indoor geometry from widely available outdoor geometry
- Definition of a CityGML LOD2 with interiors (LOD2+)
- Compute interior geometry from exterior geometry + number of storeys
- Compute net internal area

LOD2+

Exterior in LOD2	Interior in LOD2+
Buildings bodies are prisms	Storeys within building bodies are prisms
Simple roof shapes	Attic storey shapes corresponding to roof shapes
Thematically classified boundary surfaces	Thematically classified boundary surfaces
No openings in the exterior geometry	No openings in the indoor geometry

Indication of storeys

Indication of storeys

Wall thickness

Type	year y	storeys x	$t_{\text {ext }}[\mathrm{cm}]$	$t_{\text {shared }}$ [cm]
Non-stacked	$y<1970$	$x \leq 2$	27	11
		$x \geq 3$	27	12
	$1970 \leq y \leq 1985$	$x=2$	27	10
		$x=3$	28	12
		$x=4$	27	9
	$y>1985$	$x=2$	28	13
		$x=3$	30	12
		$x=4$	25	12
Stacked	$y<1970$	$x \leq 5$	29	12
		$5<x \leq 10$	38	11
		$x>10$	25	9
	$1970 \leq y \leq 1985$	$x \leq 5$	28	11
		$5<x \leq 10$	26	11
		$x>10$	29	12
	$y>1985$	$x \leq 5$	30	12
		$5<x \leq 10$	38	13
		$x>10$	35	15
Other types	$y<1970$	$x=1$	14	14
		$x \geq 2$	31	11
	$1970 \leq y \leq 1985$	$x=1$	14	14
		$x \geq 2$	30	10
	$y>1985$	$x=1$	14	14
		$x \geq 2$	36	13

Boolean set intersection

Classifying surfaces

Results

Results

Results

Net internal area (stacked)

■ Number of buildings - Cumulative \%

Net internal area (non-stacked)

- Motivation: update 3D city models from designed BIM models (including potentially interiors)
- Fill gaps using Minkowski sum to increase size of elements
- Merge elements using Boolean set union
- Reclassify surfaces

Automatic generation of CityGML LoD3 building models from IFC models

MSc thesis in Geomatics
by Sjors Donkers

December 2013
TUDelft Department of GIS Technology OTB Research Institute for the Built Environment

Goal

3DCM vs BIM

Methodology (semantics)

Methodology (geometry)

(d) result

(e) erosion

(f) final result

Results

Results

Results

Issues

- Motivation: repair 3D models so that they can be used in applications
- Voxelisation
- Reconstruction of mesh
- Obtain semantics and export

Fixing 3D models

Methodology

Voxelisation

Voxelisation: overshoo†

Voxelisation: gap

| \circ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| -0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Voxelisation: shooting rays

Majority counting: overshoot \dagger

Majority counting: gap

Marching cubes

Dual contouring

Dual contouring

Dual contouring

Dual contouring

Full process

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

(a) The original polygonal model

(c) Dual Contouring result

(b) Marching Cubes result

(d) Pressing result

Results

Results

Artefacts

Results

- Motivation: improving the accuracy of the location of personal weather stations for urban heat island research
- Generate potential locations
- Evaluate them through skyview + solar modelling

TU Delft

Delf University of Technology

Air temperature $\left({ }^{\circ} \mathrm{C}\right)$

Urban heat island

Traditional weather stations

Personal weather stations

Crowdsourced weather data

Behaviour

Potential locations

Potential locations

Potential locations

Skyview computation

Analysis

Results

Experiment

Experiment

Recommendations

- GEO5014: Geomatics as support for energy applications
- GEO5015: Modelling wind and dispersion in urban environments
- Your own MSc thesis

Sources of images

- [2-6]: Filip Biljecki (paper on application of 3D city models and PhD thesis)
- [9-20]: Roeland Boeters (MSc thesis and related paper)
- [21-29]: Sjors Donkers (MSc thesis and related paper)
- [30-48]: Damien Mulder (MSc thesis)
- [49, 51-62]: Yixin Xu (MSc thesis)
- [50]: Anna-Maria Ntarladima (MSc thesis)

