
trivariate field

voxels

boundary representation (b-rep)

Conversions between 3D
representations and formats Lesson 6.2

1.1 Conversions for fields 1
1.2 Conversions for objects 6
1.3 Notes and comments 9
1.4 Exercises 9

This lesson describes different conversions between 3D representations
and formats that a geomatics engineer might have to perform. It does not
claim to be an overview of all potential conversions, but it rather offers
insights about the algorithms and methods most commonly used, and
points out pitfalls to be aware of.

The lesson is divided into two distinct parts:

Fields: conversions that are performed when we are dealing with a field,
let it be the temperature or the concentration of a certain chemical in
the air (modelled as a 3D volume). We name such field a trivariate
field: each location (G, H, I) in space has one attribute. Voxels are
usually what is used to represent, exchange, and analyse fields in
3D.

Objects: when we are dealing with data (points, surfaces, and volumes)
that represent the boundaries of objects in our environment. These
can be sample points from lidar or dense matching of images, or
the b-rep of some buildings (which have been reconstructed with
different acquisition methods).

W To read or to watch.

The reader is advised to first read the two chapters about spatial
interpolation (Chapters 4 and 5) in the book Computational modelling
of terrains (Ledoux et al., 2020), where the 2D concepts are introduced.

1.1 Conversions for fields

A field is a model of the spatial variation of an attribute 0 over a spatial
domain, we assume this domain to be ℝ3, the 3-dimensional Euclidean
space. It is modelled by a function mapping one point ? in ℝ3 to the
value of 0, thus

0 = 5 (?)

The function can theoretically have any number of independent variables
(ie the spatial domain can have any dimensions), but in the context of
geographical phenomena the function is usually bivariate (G, H) (eg for
the elevation of terrain) or trivariate (G, H, I) (eg for the temperature of a
body of air).

The representation of a field in a computer faces many problems. First,
fields are continuous functions, and, by contrast, computers are discrete
machines. Fields must therefore be discretised, ie broken into finite parts.
Second, in practice it is usually impossible to measure continuous phe-
nomena everywhere, and we have to resort to collecting samples at some
finite locations and reconstructing fields from these samples. The discreti-
sation task therefore begins at the acquisition phase, and is affected by

cba Ken Arroyo Ohori, Hugo Ledoux and Ravi Peters. This work is licensed under a Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/)
(last update: March 17, 2021)

http://creativecommons.org/licenses/by/4.0/

2 1 Conversions between 3D representations and formats

Figure 1.1: An oceanographic dataset in
the Bering Sea in which samples are dis-
tributed along water columns. Each red
point represents a (vertical) water column,
where samples are collected every 2m.

800km

Figure 1.2: (a) input sample points. (b)
size/location of output grid. (c) 9 interpo-
lations must be performed (at locations
marked with ◦): at the middle of each cell.
(d) the convex hull of the sample points
show that 2 estimations are outside, thus
no interpolation. (e) the resulting raster. (a) (b) (c) (d) (e)

interpolation

Voronoi diagram

the acquisition tools and techniques. This fact is aggravated for fields as
found in GIS-related disciplines because, unlike disciplines like medicine
or engineering, we seldom have direct access to the whole object of
interest. Indeed, to collect samples in the ground we must dig holes or
use other devices (eg ultrasound penetrating the ground); underwater
samples are collected by instruments moved vertically under a boat, or
by automated vehicles; and samples of the atmosphere are collected by
devices attached to balloons or airplanes. Moreover, because of the way
they are collected, geoscientific datasets often have a highly sparse and
anisotropic distribution: as shown in Figure 1.1, the distribution can be
for instance dense vertically (with a sample every 2m in that real-world
case) but extremely sparse horizontally (water columns are located at
about 35km from each others).

1.1.1 Points to voxels

The conversion from scattered points to grid is trivial: simply interpolate
at regular locations in three dimensions (which represent the centre of
each voxel) and output the results in the appropriate format (grids can
be stored in many ways). Figure 1.2 shows the process in two dimensions.

All the interpolation methods discussed during GEO1015 (Chapters 4
and 5) generalise to three dimensions. However, it is not obvious that they
preserve their properties or are appropriate for geoscientific datasets.

Nearest neighbour. The method, based on the Voronoi diagram (VD),
generalises in a straightforward manner to 3D. It suffices to build the VD
and to identify inside which cell the interpolation point lies. The VD can
be bypassed if a three-dimensional :d-tree is used.

1.1 Conversions for fields 3

anisotropic distribution

x

p1

p3

p2

A1
A3

A2

wi(x) = Ai

(2D)

(3D)

x

p1

p3

p2

p4

Figure 1.3: Barycentric coordinates in two
and three dimensions. �8 represents the
area of the triangle formed by G and one
edge. In 3D, the tetrahedron is subdivided
into 4 tetrahedra.

Inverse distance weighting (IDW). The generalisation of this method
to three dimensions is straightforward: a searching spherewith a given
radius is used. The same problems with the one-dimensionality of the
method (the value for the search radius) will be even worse because the
search must be performed in one more dimension. The method has too
manyproblems to be considered has a viable solution for fields as found in
geosciences: the interpolant is not guaranteed to be continuous, especially
when the dataset has an anisotropic distribution, and the criterion has to
be selected carefully by the user. Note that the implementation problems
are also similar to the ones encountered with the previous method, and
an auxiliary data structure must be used to avoid testing all the points in
a dataset.

Linear interpolation in tetrahedra. This is the generalisation of the
popular linear interpolation in TINswhere the tetrahedra of the Delaunay
tetrahedralisation (DT) are used. The barycentric coordinates can be used
to linearly interpolate inside a tetrahedron, as shown in Figure 1.3 the
volumes of 4 tetrahedra are used (instead of the area for the 2D case.)

The volume of a 3-simplex � is easily computed:

E>;(�) = 1
3 !

����det
(
E0 · · · E3

1 · · · 1

)���� (1.1)

where E 8 is a 3-dimensional vector representing the coordinates of a
vertex and det() is the determinant of the matrix.

As explained above, finding tetrahedra having a good shape is not as
easy as in two dimensions, and the presence of slivers yield bad results
for the interpolation process. To be used in practice, the shape of the
tetrahedra is usually improved with techniques involving the insertion
of new points and/or applying flips.

Natural neighbour interpolation. The theory of this method also gen-
eralises in a straightforward manner to 3D. Instead of having stolen areas,
we have stolen volumes between the Voronoi cells. However, although
the concepts behind the method are simple and easy to understand, its
implementation for the 3D case is far from being straightforward. The
main reasons are that it requires the computation of two VDs—one with
and one without the interpolation point—and also the computation of
volumes of Voronoi cells. This involves algorithms for both constructing
a VD and deleting a point from it.

The volume of a 3-dimensional Voronoi cell is computed by decomposing
it into 3-simplices—not necessarily Delaunay simplices—and summing
their volumes. Triangulating a Voronoi cell is easily performed since it is
a convex polyhedron.

kriging. All of the most common kriging varieties generalise to three
dimensions without major changes, including simple kriging and ordi-
nary kriging. In the simplest case, covariance functions, experimental
variograms and fitted functions work exactly the same as in 2D but are
computed using distances in 3D.

4 1 Conversions between 3D representations and formats

Figure 1.4: The importance measure of a
point can be expressed by its error. When
this error is greater than a given thresh-
old &max, the point is kept (?1), else it is
discarded (?2).

p1

p2

error(p1) > εmax

error(p2) < εmax

simplification

However, the vertical direction has a much weaker correlation than
the horizontal directions in many fields, eg temperature, pressure and
humidity. Anisotropy is thus a much more significant factor in 3D and
almost always has to be modelled. A minimal solution is a custom
distance function that scales the vertical direction. A better (but still
simple) solution involves computing multiple experimental variograms:
two (for the horizontal plane G, H and for the vertical direction I) or three
(for G, H and I).

1.1.2 Voxels to points

The conversion of a voxel to a set of scattered points is not a simple
operation. Given a three-dimensional grid, it is possible to create one
data point at the centre of each voxel. Notice however that potentially a
lot of the neighbouring points will be the same value, and thus a lot of
redundancy is stored.

A better approach to this problem is to consider it as a simplification
problem. Given a set (of points inℝ3 representing a field 5 (where each
point ? in (as an attribute 0 attached to itself), the aim is to find a subset
' of (which will approximate 5 as accurately as possible, using as few
points as possible. The subset ' will contain the ‘important’ points of
(, ie a point ? is important when 0 at location ? can not be accurately
estimated by using the neighbours of ?.

The two algorithms described in the GEO1015 book (Section 8.3) can in
theory be generalised; Figure 1.4 shows the idea for the 1D case. Both
strategies (decimation and refinement) can be implemented.

The error associated with each point ?, denoted error(?), is calculated by
interpolating at location ? after ? has been temporarily removed from
the field, and comparing the value obtained with the real attribute 0
of ?, thus error(?) = |0 − 4BC8<0C8>= |. As shown in Figure 1.4 for a
one-dimensional case, when the error is more than &max then the point
must be kept, if it is less then the point can be discarded.

Themethod for 2Dfields inGEO1015 uses linear interpolation in triangles,
that is after ? has been temporarily deleted from DT((), the triangulation
is updated and the estimation is obtained with the triangle containing
location ?. However, since mentioned earlier, using the DT in 3D for
interpolation is not advised (because they contain slivers). As an alterna-
tive, one could use for instance the natural neighbour interpolation, and

1.1 Conversions for fields 5

(a) (b) (c)

Figure 1.5: An example of an oceanographic dataset where each point has the temperature of the water, and three isosurface extracted (for a
value of respectively 2.0, 2.5 and 3.5) from this dataset.

isosurfaces, or level sets

each error is calculated by interpolating in the field at the location and
comparing the real and the estimated value.

1.1.3 Conversion to isosurfaces

Given a trivariate field 5 (G, H, I) = 0, an isosurface is the set of points in
spacewhere 5 (G, H, I) = 00, where 00 is a constant. Isosurfaces, also called
level sets, are the three-dimensional analogous concept to isolines (also
called contour lines), which have been traditionally used to represent the
elevation in topographic maps. Figure 1.5 shows one concrete example.

In two dimensions, isolines are usually extracted directly from a TIN
or a regular grid. The idea is to compute the intersection between the
level value (eg 200m) and the terrain, represented for instance with a
TIN. Each triangle is scanned and segment lines are extracted to form an
approximation of an isoline.

In three dimensions, for a trivariate field, the same idea can be used to
extract surfaces.

From voxels: Marching Cubes. The principal and most known algo-
rithm for extracting an isosurface form a voxel dataset is the Marching
Cubes. The isosurface is computed by finding the intersections between
the isosurface and each voxel/cube of the representation. Linear interpo-
lation is used along the edges of each cube to extract ‘polygonal patches’
of the isosurface. There exist 256 different cases for the intersection of a
surfacewith a cube (considering that the value of each of the eight vertices
of a cube is ‘above’ of ‘under’ the threshold), although if we consider the
symmetry in a cube that comes down to only 15 cases. The major problem
with the marching cubes algorithm is that the isosurface may contain
‘holes’ or ‘cracks’ when a cube is formed by certain configurations of
above and under vertices. The ambiguities are shown in Figure 1.6 for
the two-dimensional case when two vertices are above the threshold,
and two under, and they form a ‘saddle’. The three-dimensional case is
similar, with many more cases possible.

6 1 Conversions between 3D representations and formats

Figure 1.6: Ambiguous extraction of an
isoline where the attribute is 8.

10

124

6 10

124

6 10

124

6

Figure 1.7: Potential isosurface (for an at-
tribute value E) extracted for one tetra-
hedron. Black vertex means that the at-
tribute of this vertex is below E; white
vertex means it is above; and grey that it
is equal. (a) (b) (c) (d) (e) (f)

big tetrahedron

From a tetrahedral mesh: Marching Tetrahedra. Although it is possi-
ble to fix the ambiguities, as is the case in two dimensions, the simplest
solution is to subdivide each cell into simplices (cubes into tetrahedra
in 3D). The so-calledMarching Tetrahedra algorithm is very simple: each
tetrahedron is tested for the intersection with the isosurface, and tri-
angular faces are extracted from the tetrahedra by linear interpolation
on the edges. The resulting isosurface is guaranteed to be topologically
consistent (ie will not contain holes), except at the border of the dataset.
But again, if a “big tetrahedron” is usedwhere the vertices are assigned to
a value lower than theminimum value of the field, then all the isosurfaces
extracted are guaranteed to be ‘watertight’. The nice thing about the
algorithm is that only three cases for the intersection of the isosurface
and a tetrahedron can arise:

1. the four vertices have a higher (or lower) value. No intersection.
(Figure 1.7a)

2. one vertex has a higher (or lower) value, hence the three others
have a lower (or higher) value. Three intersections are thus defined,
and a triangular face is extracted. (Figure 1.7b)

3. two vertices have a higher (or lower) value and the others have
a lower (or higher) value. Four intersections are thus defined. To
ensure that triangular faces are extracted (better output for graphics
cards), the polygon can be split into two triangles, with an arbitrary
diagonal. (Figure 1.7c)

The only degenerate cases possible are when one or more vertices have
exactly the same value as the isosurface. These cases are handled very
easily, and the intersection is simply assumed to be at the vertices
themselves (see Figure 1.7d/e/f). Notice that the case when three vertices
have exactly the same value, then the complete face of the tetrahedron
must be extracted to ensure topological consistency.

1.2 Conversions for objects

1.2.1 Points to b-rep

In the context of the built environment, this would most likely mean that
from apoint cloud, a LoD2model of the buildings, and eventually of other
objects such as trees and bridges, are reconstructed. See Lesson 2.2.

1.2 Conversions for objects 7

Figure 1.8: b-rep model of BK-City, from
Lesson 2.2

It should be noticed that the b-rep can be formed solely of triangles, or of
polygons. The polygons can have interior boundaries, as defined in ISO
19107 (see Lesson 3.2).

1.2.2 Points/surfaces/volumes to voxels

The conversions of points, curves, surfaces and volumes to voxels are
covered in Lesson 2.1.

1.2.3 b-rep to mesh

For the purposes of this lesson, a mesh is a collection of simplices that
define the (3D) shape of an object (eg a building, a tree, or a bridge).

If we take the 3D model of a building (say BK-City, see Figure 1.8), this
model is formed of several planar faces (hopefully) forming a closed
2-manifold.

In practice, if someone wants the mesh of this b-rep, it could mean two
different structures:

2D triangulation of each surface: the constrained Delaunay triangula-
tion, or simply an arbitrary constrained triangulation, for each of
the polygon can be created. These are independently performed
for each surface, and involve transforming the 3D coordinate of
the vertices of the surface to a 2D system; this coordinate system is
on the plane defined by the surface. Notice that this assumes that
all input surfaces of the b-rep are planar, if it is not the case then
finding a projection that preserves the topology of the polygon
might not be possible.

Tetrahedralisation of the volume defined by the surfaces: the constrained
tetrahedralisation of the volume defined by the b-rep; see Lesson 3.1.

Figure 1.9 shows one example, notice that the volume modelled by the
boundary is tetrahedralised, but that here only some tetrahedra (in grey)
are shown. The surfaces of the b-rep also get meshed in the same process
(each surface is triangulated).

8 1 Conversions between 3D representations and formats

Figure 1.9: BK-City LoD2 b-rep tetrahe-
dralised.

1.2.4 IFC to/from CityGML

The conversion between IFC (see Lesson 7.2) and the CityGML data
model (in either direction) is a very actual topic (many organisationwould
like to be able to realise it) but it is also riddled with problems caused by
the differences in semantics, in data formats, and in the way geometries
are modelled. Automatic conversion with commercial software, eg FME
or ArcGIS, will often “work”, but because of the complexity of some
formats, information will often be lost in the conversion. Be aware.

The following scientific paper summarises the issues and proposes one
solution. This solution is (mostly) based on the methods and algorithms
we have studied so far in this course.

It should be noticed that this paper is a summary of the MSc thesis of
Sjors Donkers, who studiedMSc Geomatics in 2014–2015. This MSc thesis
gives you an idea of what a (very good) thesis should look like, in content
and in scope.

W To read or to watch.

S. Donkers et al. (2016). Automatic conversion of IFC datasets to
geometrically and semantically correct CityGML LOD3 buildings.
Transactions in GIS 20.4, pp. 547–569

PDF: https://3d.bk.tudelft.nl/hledoux/pdfs/16_tgis_ifc
itygml.pdf

Full MSc thesis: http://resolver.tudelft.nl/uuid:31380219
-f8e8-4c66-a2dc-548c3680bb8d

https://3d.bk.tudelft.nl/hledoux/pdfs/16_tgis_ifcitygml.pdf
https://3d.bk.tudelft.nl/hledoux/pdfs/16_tgis_ifcitygml.pdf
http://resolver.tudelft.nl/uuid:31380219-f8e8-4c66-a2dc-548c3680bb8d
http://resolver.tudelft.nl/uuid:31380219-f8e8-4c66-a2dc-548c3680bb8d

1.3 Notes and comments 9

1.3 Notes and comments

Lorensen and Cline (1987) first describe the Marching Cubes algorithm
to extract isosurfaces from voxels. Although Wilhems and Gelder (1990)
describe various methods to fix the ambiguities, as is the case in two
dimensions, the simplest solution is to subdivide the cubes into tetrahe-
dra.

Cheng et al. (2000) and Miller et al. (2002) both describe methods to
remove slivers inDelaunaymeshes and to improve the shape of tetrahedra
(so that they can be used for interpolation).

1.4 Exercises
1. Converting samples points to voxels require totally different algo-

rithm if the samples point represent a field or an object. Discuss
why.

2. If the b-rep model of BK-city contains intersecting surfaces and has
gaps/holes, will it be possible to mesh the model?

3. For terrains, linear interpolation in a TIN is very popular and used.
Why is it less popular for trivariate fields?

4. It is stated in the lesson that “Triangulating a Voronoi cell is easily
performed since it is a convex polyhedron”. Explain one method.

5. In the methodology of Donkers et al. (2016), why are the dilation
and erosion operators used? Are they always necessary? Can you
think of a simple dataset where they could be skipped?

10

Bibliography

Cheng, S.-W., T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng
(2000). Sliver exudation. Journal of the ACM 47.5, pp. 883–904.

Donkers, S., H. Ledoux, J. Zhao, and J. Stoter (2016). Automatic conversion
of IFC datasets to geometrically and semantically correct CityGML
LOD3 buildings. Transactions in GIS 20.4, pp. 547–569.

Ledoux, H., K. A. Ohori, and R. Peters (2020). Computational modelling of
terrains. https://doi.org/10.5281/zenodo.3992107. Self-published.

Lorensen, W. E. and H. E. Cline (1987). Marching cubes: A high resolution
3D surface construction algorithm. Computer Graphics 4, pp. 163–168.

Miller, G. L., S. E. Pav, and N. J. Walkington (2002). Fully Incremental 3D
Delaunay Refinement Mesh Generation. Proceedings 11th International
Meshing Roundtable. Sandia National Laboratories, USA, pp. 75–86.

Wilhems, J. and A. van Gelder (1990). Topological considerations in
isosurface generation. Computer Graphics 24.5, pp. 79–86.

	Conversions between 3D representations and formats
	Conversions for fields
	Conversions for objects
	Notes and comments
	Exercises

