
Figure 1.1: A composite curve made from
two line segments and a circular arc.
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The vast majority of geographic information uses only linear geometries
(ie line segments, polygons and polyhedra). When curved geometries
are present, they are usually simple parametric shapes, such as spheres,
cylinders and cones in CSG or circular arcs in certain 2D datasets (Fig-
ure 1.1). Moreover, most data models are designed with linear geometries
in mind.

However, modelling curves and curved surfaces is still highly desirable
in certain circumstances, as they make it possible to model many shapes
a lot more compactly and without losing precision through discretisation.
Most CAD and 3D modelling software thus support curves and curved
surfaces, and BIM models routinely use them internally as well.

There are several methods that can be used to represent general curves
in 2D/3D and curved surfaces in 3D. This lesson covers one of them
that is relatively simple and works well in practice: Bézier curves and
surfaces.

1.1 Background

1.1.1 Types of points

In general, curve and surfacemodelling is done by specifying the locations
of points, of which there are two kinds (Figure 1.2a):

data points are points that the curve/surface needs to pass through;
and

control points are points that have some influence over the shape of
the curve/surface, but through which the curve/surface does not
necessarily pass. Intuitively, they ‘pull’ the curve in their direction.

Note that in some contexts, they might all be referred to as control points
(eg graphics software), whereas in others (eg interpolation) the distinction
is almost always made. If you have some experience with vector-based

(a)

(b)

Figure 1.2: (a) The data points (white)
and control points (black) used to draw
a Bézier curve. (b) In Affinity Designer
(shown here) and most other graphics
editors, data points (large circles) are
surrounded by handles with the control
points at their ends (small blue circles)
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Figure 1.3:Theparametric curve�(G, H) =
(cos C , sin C) for the unit circle (black), its
first derivative at C = 0 (green), and the
second derivative (red).

graphic editors (eg Adobe Illustrator, Inkscape or Sketch), you have likely
drawn curves using data points and control points (Figure 1.2b).

1.1.2 Types of curves and surfaces

There are three kinds of mathematical representations that are typically
used to represent curves and surfaces. From most restrictive to least
restrictive, these are:

Explicit curves/surfaces are modelled using a function that defines the
value of one coordinate, generally H in 2D and I in 3D, based on
the other coordinate(s). For instance, 5 (G) = H = G2 can be used
to define a parabola in 2D, and 5 (G, H) = I = G2 + H2 to define a
paraboloid in 3D. This makes it impossible to represent vertical
lines in 2D and planes in 3D (without swapping the dependent and
independent variables in the equation), and makes it difficult to
havemultiple values per dependent variable,withminor exceptions
such as the use of plus or minus (±), eg 5 (G) = H = ±

√
1 − G2 for a

circle or 5 (G, H) = I = ±
√

1 − G2 − H2 for a sphere.
Implicit curves/surfaces are modelled using a single function with all

coordinates as parameters. For instance, 5 (G, H) = G2 + H2 = 1
defines a unit circle in 2D and 5 (G, H, I) = G2 + H2 + I2 = 1 defines
a unit sphere in 3D. This works fine with vertical lines/planes
and can represent multiple values per dependent variable, but
completely functions have to be built to represent different curves.

Parametric curves/surfaces are modelled using different functions per
coordinate which have independent non-coordinate variables as pa-
rameters. For instance, 5 (C) = (cos C , sin C) with 0 ≤ C ≤ 2� defines
a unit circle in 2D, whereas 5 (C) = (cos� sin), sin� sin), cos))
with 0 ≤ � ≤ 2� and 0 ≤ � ≤ � defines a unit sphere in 3D. This
is the most flexible approach because it allows us to define curves
and surfaces in a general form that works independently of the
coordinates used.

Because of their flexibility, Bézier curves/surfaces and most other curve
modelling methods (eg splines) are based on parametric curves/surfaces.
For the rest of this lesson, we will therefore be working with parametric
curves/surfaces only.

1.1.3 Tangent vectors and other derivatives

If we compute the first derivative of a parametric curve with respect
to its parameter(s) at a given point, we get vector(s) with a direction
that is tangent to the curve and a magnitude that tells us the rate of
change of the parameter(s) at that point. For instance, in the curve
�(G, H) = (cos C , sin C)with 0 ≤ C ≤ 2� (Figure 1.3), which describes the
unit circle, at C = 0 we get the point (1, 0), ie the rightmost point on
the circle using the typical axis directions. The tangent vector is then
3�(G, H)/3C = (− sin C , cos C), which at C = 0 is (0, 1), ie a unit vector
pointing upwards (whichmakes sense considering that it draws the circle
in a counter-clockwise direction).
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A common analogy to understand this concept is to consider a moving
particle moving in time (hence you will often see C used in parametric
functions). The parametric function tells us the position of the particle at
any given time, and the tangent vector tells us the direction and speed of
the particle at that time.

The second derivative of a parametric curve is a little harder to visualise,
but it is also a vector that tells us the rate of change of the curvature at a
point. In the particle analogy, it is the acceleration of the particle (and
its acceleration direction). In the circle from the previous example, the
second derivative is 32�(G, H)/3C2 = (− cos C ,− sin C), which at C = 0 is
(−1, 0), ie a unit vector towards the centre of the circle.

1.1.4 Uniform vs. non-uniform

In order to fit a parametric curve through a series of points, we need
to decide the curve equations and the values of the parameters that
should be used. We will discuss the curve equations for Bézier curves
and surfaces later in this chapter, so for the moment let us consider only
two points ?0 and ?1, which are connected by a straight line segment !.
The parametric equation of the line segment would be given by:

!(C) = (1 − C)?0 + C?1, for 0 ≤ C ≤ 1. (1.1)

Here, note that C = 0 corresponds to ?0 and C = 1 corresponds to ?1.
When the equation is parametrised so that the parameter increases by
a fixed amount for every point in a sequence of points, it is said to be a
uniform parametric curve. When this is not the case, it is a non-uniform
parametric curve.

1.1.5 Polynomials, segments and patches

Polynomial functions can be used to directly model entire curves and
surfaces. In 2D, a polynomial of degree one (ie a straight line) is a linear
function of the form 5 (C) = 0C+1 that can be defined so as to pass through
two points, a polynomial of degree two (ie a parabola) is a quadratic
function of the form 5 (C) = 0C2 + 1C + 2 that can be made to pass through
three points, a polynomial of degree three is a cubic function of the form
5 (C) = 0C3 + 1C2 + 2C that can be made to pass through four points, and
so on. We can therefore use a polynomial of degree = to model a curve
passing through = + 1 points.

However, high-degreepolynomialswobbleuncontrollably topass through
all the points, and a small change in the position of one of the points
can cause large changes all over the curve. It is thus much better to split
curves and surfaces into segments (for curves) and patches (for surfaces)
passing through only a small number of points, and then to join these
segments/patches using low-degree polynomial functions (generally
quadratic or cubic).

In a parametric curve �(C), specific values of C can be used to split the
curve into segments. Most commonly, the data points will be used for this
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Figure 1.4: A composite Bézier curve made from three segments.

Figure 1.5: A Bézier rectangular patch.
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purpose, which for uniform parametric curves will be at C = 0, 1, 2, . . .
(Figure 1.4).

In a parametric surface ((D, E), specific values of D are curves on the
surface, as are values of E. Similarly, a set of two curves with fixed D and
two curves with fixed E will bound a patch, eg ((D, 0), ((D, 1), ((0, E)
and ((1, E) (Figure 1.5).

1.1.6 Continuity

In order to describe how segments/patches should be joined, we rely on
the concept of continuity, of which there are two types: geometric and
parametric. Geometric continuity can be defined as follows:

Positional (�0) continuity means that the boundary of a segment or
patch matches that of its neighbours, ie there are no holes at
common boundaries (Figure 1.6a);

Tangential (�1) means that the angles of segments or patches match
those of its neighbours at their common boundaries, ie no sharp
edges at common boundaries (Figure 1.6b);

Curvature (�2) means that the curvature of a segment or patch match
that of its neighbours at their common boundaries, ie no ‘soft’
edges at common boundaries.

Generalising from here, we can say that a curve has �= continuity at a
boundary point when the =-th derivatives have the same direction at
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(a) (b)
Figure 1.6: Continuity: (a) �0 and (b) �1.
�2 continuity is difficult to achieve with
Bézier curves.

�= continuity
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that point. If they have the same magnitude as well, it is also said to have
�= continuity. Therefore, �= continuity implies �= continuity.

1.2 Bézier curves

Bézier curves are parametric curves that are based on a polynomial
function with one parameter. They are named after Pierre Bézier, who
developed them to model the stylised shapes of cars while working at
Renault in the 1960s. Interestingly enough, they were also independently
developed by Paul de Casteljau at Citroën, likely before Bézier, but it
appears that hewas not allowed to publish them. However, De Casteljau’s
algorithm, which is used to evaluate Bézier curves, is named after him.

1.2.1 A single Bézier segment

Given a sequence of points, the Bézier curve starts from the first point
and ends at the last point, whereas the intermediate points are treated
as control points that ‘pull’ the curve in their direction, but always
remaining inside the convex hull of the points. This is known as a Bézier
segment.

The tangent vector at the first point points to the second point, whereas
the tangent vector at the last point points from the next-to-last point to it.
Similar constructions can be made for the higher derivatives, with the
=-th derivative being determined only by = + 1 points.

If there are no intermediate points, the result is a linear Bézier curve,
which is equivalent to a straight line between the two endpoints. Themost
common forms of Bézier curves are however quadratic Bézier curves
(Figure 1.7), which have one intermediate point, eg ?quadratic = (?0 , ?1 , ?2),
and cubic Bézier curves (Figure 1.8), which have two intermediate points,
eg ?cubic = (?0 , ?1 , ?2 , ?3). Note the tangent vectors in both figures, as
well as how the curves always fit within the convex hull of the points.
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Figure 1.7: Three quadratic Bézier curves

Figure 1.8: Three cubic Bézier curves

Bernstein polynomials

binomial coefficient
Pascal’s triangle

A Bézier curve � can be formulated as a sort of weighted average of its
points (?8 , . . . , ?=):

�(C) =
=∑
8=0

�=8 (C)?8 , for 0 ≤ C ≤ 1 (1.2)

where �=
8
is the weight associated with the point ?8 .

Intuitively, you can imagine that wewant this weight to reach amaximum
when we are close to the point and decrease as we move farther from
it. For example, in a quadratic Bézier curve, �=0 should start from its
maximum value at C = 0 and decrease as C increases, �=1 should start low,
increase to reach a maximum at C = 0.5 and decrease afterwards, and �=2
should start from its lowest point and increase to reach its maximum at
C = 1.

The exact functions used to determine the weights in Bézier curves are
called Bernstein polynomials (Figure 1.9), named after Sergei Natanovich
Bernstein who discovered them in the 1910s. These are given by:

�=8 (C) =
(
=

8

)
C 8(1 − C)=−8 , where

(
=

8

)
=

=!
8!(= − 8)! (1.3)

where = is the degree of the Bézier curve, ie 1 for linear, 2 for quadratic, 3
for cubic, etc.

(
=
8

)
is the binomial coefficient, which is equivalent to the 8-th

column of the =-th row in Pascal’s triangle (Figure 1.10).

Linear Bézier curves (= = 1) are thus given by:
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Figure 1.9: Weights obtained from the Bernstein polynomials for (a) linear, (b) quadratic and (c) cubic Bézier curves.

1
1  1

1  2  1
1  3  3  1

1  4  6  4  1
1  5 10 10 5  1

Figure 1.10: Pascal’s triangle, where the
numbers are obtained by adding the num-
bers in the row above (starting from a
single 1).



8 1 Bézier curves and surfaces
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�(C) =
1∑
8=0

�1
8 (C)?8

= (1 − C)?0 + C?1, for 0 ≤ C ≤ 1. (1.4)

which is equivalent to the parametric equation of the line we discussed
in the background. Quadratic Bézier curves (= = 2) are given by:

�(C) =
2∑
8=0

�2
8 (C)?8

= (1 − C)2?0 + 2C(1 − C)?1 + C2?2, for 0 ≤ C ≤ 1. (1.5)

And cubic Bézier curves (= = 3) are given by:

�(C) =
3∑
8=0

�3
8 (C)?8

= (1 − C)3?0 + 3C(1 − C)2?1 + 3C2(1 − C)?2 + C3?3, for 0 ≤ C ≤ 1. (1.6)

1.2.2 Composite Bézier curves

Now, let us discuss how to join multiple Bézier segments together
smoothly into a composite Bézier curve or a polybezier (accent usually
omitted). When they are joined in a loop, ie joining the last to the first,
it is sometimes called a beziergon or bezigon. Many common vector file
formats use these, including several font formats, PDF files, and SVG
images. Figure 1.2 also shows how these commonly look in software,
where the intermediate control points are shown as ‘handles’ around the
data points.

As we mentioned before, high-degree polynomials are undesirable be-
cause they tend to wobble and are hard to control. It is therefore usually
better to create composite Bézier curves by connecting Bézier segments
made from low-degree Bézier curves using only a few control points,
most often cubics.

Connecting multiple Bézier segments with �0 or �0 continuity simply
means that their common endpoint should be the same. That is, if we
have a composite Bézier curve formed by two adjacent Bézier segments,
where the first is defined by the points (?0 , . . . , ?=) and the second is
defined by the points (@0 , . . . , @=), we need to enforce that ?= = @0.

As we previously discussed, the tangent vector of the endpoint of a Bézier
curve is related only to the endpoint and its neighbour. Therefore, �1
continuity can be achieved by making sure that the common endpoint
and its two neighbours, ie ?=−1 and @1, are collinear (Figure 1.11). For �1
continuity, they should also be evenly spaced. �2 and �2 continuity is
hard to achieve, so we will not discuss it here.
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(a)
(b)

Figure 1.11: Two composite Bézier curves
with: (a)�1 continuity and (b) �1 continu-
ity (bottom).

biquadratic Bézier surface
bicubic Bézier surface

1.3 Bézier surfaces

1.3.1 Rectangular Bézier surfaces

Moving on to 3D, the most common implementation of Bézier surfaces
uses rectangular patches, which are made of grids of points. The most
common are biquadratic (3×3; Figure 1.12) and bicubic (4×4; Figure 1.13)
surfaces, which are defined based on square matrices of points, such
as:

?biquadratic =
©­«
?0,0 ?0,1 ?0,2
?1,0 ?1,1 ?1,2
?2,0 ?2,1 ?2,2

ª®¬ , and (1.7)

?bicubic =

©­­­«
?0,0 ?0,1 ?0,2 ?0,3
?1,0 ?1,1 ?1,2 ?1,3
?2,0 ?2,1 ?2,2 ?2,3
?3,0 ?3,1 ?3,2 ?3,3

ª®®®¬ , (1.8)

where only the four corner points are data points and all the others are
control points. Note that the four sides of a Bézier surface are Bézier
curves using the points on the top/bottom/left/right of the matrix.

A rectangular Bézier surface is described as:

((D, E) =
=∑
8=0

<∑
9=0

�=8 (D)�<9 (E)?8 , 9 , for 0 ≤ D ≤ 1, 0 ≤ E ≤ 1. (1.9)

where ?8 , 9 is a point in an < × = matrix that defines the data points and
control points used for the patch.

Figure 1.12: A Bézier biquadratic surface
and the points that define it. Note how the
four corners are the only data points and
how the surface is tangent to them.
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Figure 1.13: A Bézier bicubic surface and
the points that define it. Note how the four
corners are the only data points and how
the surface is tangent to them.

composite Bézier surface
Bézier patch

triangular Bézier surface
Bézier triangle

As with composite Bézier curves, composite Bézier surfaces can be created
by joining together multiple rectangular Bézier patches. These follow the
same logic as the composite Bézier curves.

In order to get �0 and �0 continuity, the common points at the boundary
of the two matrices should be the same. That is, if we have a composite
Bézier surface formed by two adjacent Bézier rectangular patches, where
the first is defined by the matrix ? and the second by the matrix @, which
are defined as:

? =
©­­«
?0,0 · · · ?0,=
...

. . .
...

?<,0 · · · ?<,=

ª®®¬ , @ =
©­­«
@0,0 · · · @0,=
...

. . .
...

@<,0 · · · @<,=

ª®®¬ , (1.10)

and they are joined at the curve defined by ?8 ,= and @8 ,0, for 0 ≤ 8 ≤ =,
we simply need to enforce that ?8 ,= = @8 ,0.

For �1 continuity, we need to ensure that the tangent vector at the
common curve has the same direction, which is given by:

%?(D, E)
%E

����
E=1

= 0
%@(D, E)

%E

����
E=0

. (1.11)

where 0 can have any positive value. For �1 continuity, the magnitude of
the vector needs to be the same, which means that 0 = 1 in the previous
equation. Just as with composite Bézier curves, these conditions are
achieved when each point along the common boundary curve and its
neighbours on either side patch. That is, for all 8, ?8 ,=−1, @8 ,0 and @8 ,1, are
collinear (for �1) and also evenly spaced (for �1).

1.3.2 Triangular Bézier surfaces

Triangular Bézier surfaces, or simply Bézier triangles, are the other
common type of Bézier surface. These are better parametrised in terms
of three barycentric coordinates, which we here denote as D, E and
F (Figure 1.14). Note however that the three coordinates not linearly
independent, as they always add up to one.

Triangular Bézier surfaces are defined based on triangular arrangements
of points of the form:
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(b)
Figure 1.14: The barycentric coordinates
used to parametrise triangular Bézier sur-
faces

Figure 1.15: A Bézier quadratic triangle
and the points that define it. Note how the
three corners are the only data points and
how the triangle is tangent to them.

bivariate Bernstein polynomials

?linear =
?0,1,0

?0,0,1 ?1,0,0
, (1.12)

?quadratic =

?0,2,0
?0,1,1 ?1,1,0

?0,0,2 ?1,0,1 ?2,0,0

, (1.13)

?cubic =

?0,3,0
?0,2,1 ?1,2,0

?0,1,2 ?1,1,1 ?2,1,0
?0,0,3 ?1,0,2 ?2,0,1 ?3,0,0

, (1.14)

where the surface is described by:

((D, E, F) =
∑

8+9+:==
8,9,:≥0

�=
8,9,:
(D, E, F)?8 , 9 ,: , (1.15)

and �=
8,9,:

are the bivariate Bernstein polynomials, which are given by:

�=
8,9,:
(D, E, F) = =!

8!9!:!
D 8E:F: (1.16)

For the first few values of =, these are:
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Figure 1.16: A Bézier cubic triangle and
the points that define it. Note how the
three corners are the only data points and
how the triangle is tangent to them.

�1
8 , 9 ,:

=
E

F D
, (1.17)

�2
8 , 9 ,:

=

E2

2EF 2DE
F2 2DF D2

, (1.18)

�3
8 , 9 ,:

=

E3

3E2F 3DE2

3EF2 6DEF 3D2E

F3 3DF2 3D2F D3

(1.19)

As with rectangular Bézier surfaces, the points on any of the three edges
of the triangular Bézier surface define a Bézier curve.

In order to create a composite Bézier surface from triangular Bézier
patches, we need to have similar constraints as before. For �0 and �0
continuity, the common boundary points should be the same. That is,
if we have a composite Bézier surface formed by two adjacent Bézier
triangular patches, where the first is defined by the matrix ? and the
second by the matrix @, which are defined as:

? =

?0,=,0
...

?=,0,0
...

. . .
?0,0,=

, @ =

@0,=,0
. . .

... @=,0,0
...

@0,0,=

, (1.20)

and they are joined at the curve defined by D = 0 on both, ie ?0, 9 ,=−9 and
@0, 9 ,=−9 , for all 0 ≤ 9 ≤ =, we need to enforce that ?0, 9 ,=−9 = @0, 9 ,=−9 .

For �1 continuity, it is somewhat more complex than for rectangular
Bézier surfaces. Basically, we need to ensure that along the common
boundary curve, three specific vectors starting at every common point on
the boundary surface except for the last one, ie ?0, 9 ,=−9 , for all 0 ≤ 9 < =,
should be coplanar. These three vectors are the ones pointing to: (i) the
next point along the common curve (ie ?0, 9 ,=−9 to ?0, 9+1,=−9−1), (ii) the next
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point in the D direction in the patch on the left (ie ?0, 9 ,=−9 to ?1, 9 ,=−9−1),
and (iii) the next point in the D direction in the patch on the right (ie
@0, 9 ,=−9 to @1, 9 ,=−9−1).

1.4 Exercises
1. What are the explicit, implicit and parametric equations for a line?

And for a plane? Hint: start from two and three points.
2. Open any graphics editing software that can model curves. What

degree of continuity does it enforce?
3. Derive the weights given by Bernstein polynomials for quartic

(degree four) and quintic (degree five) Bézier curves. At which
values of C do they reach a maximum?

4. How would you store the data points and control points for:

a) a composite Bézier curve with cubic segments?
b) a rectangular Bézier patch in a half-edge data structure?
c) a triangular Bézier patch in a triangle-based data structure?

5. Cubic Bézier curves and surfaces are the most commonly used
ones. Why do you think that is? Hint: think of inflection points

1.5 Notes and comments

Salomon (2006) is a nice book covering all aspects of modelling curves
and curved surfaces. Some of the equations described in this lesson are
adapted (and usually simplified) from this book.

Farin (2004) covers the history of how Bézier curves and other curve
modelling approaches were created (with nice historical pictures).

There are nice animations showing a graphical interpretation of Bézier
curves in their Wikipedia article, although the rest of the article is not as
good.

https://en.wikipedia.org/wiki/B�zier_curve#Constructing_B�zier_curves
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