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Figure 1.1: Different ways to represent the
shape of gingerbread man (a). b) b-rep; c)
InteriorMAT; d) b-rep +MATwithmedial
balls; e) b-rep + contours of equal distance
to it + MAT
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The Medial Axis Transform (MAT) is yet another way to represent a 3D
model. It can be considered a dual representation to the b-rep, similar
to how the Voronoi diagram is dual to the Delaunay triangulation.
Contrary to the b-rep, that represents a model by describing explicitly its
boundary surface, the MAT describes a model by its skeleton (compare
Figures 1.1b and 1.1c). Both the MAT and the b-rep contain exactly the
same information and it is possible to convert one to the other without
loss of information.

Compared to other shape representations, this skeleton structure makes
different properties of the model explicit. For example, the MAT allows
us to split a shape into parts simply by looking at the branches of the
skeleton. The resulting shape parts often turn out to be meaningful in
practice. Observe for instance that for the gingerbread man in Figure 1.1,
its arms, legs, torso and head each have one corresponding branch in
its medial axis (compare Figures 1.1a and 1.1c). For DTMs for example,
equally meaningful decompositions into parts can be made, eg the MAT
allows us to decompose a DTM into separate hills, watercourses and
other objects on top the DTM (see Figure 1.4b).

1.1 Defining the MAT

The MAT can be computed both for 2D and 3D objects (compare Fig-
ures 1.2a and 1.2b). In both cases there are two equivalent definitions of
the MAT∗ that apply. One is based on the distance transform, and one is
based on medial balls. Both definitions describe how to obtain the MAT
from the boundary, denoted B, of an object (Figure 1.1b). And both can
be applied to both 2D and 3D objects .

(a) The MAT for a 2D
box consists of medial
balls (blue) and the me-
dial axis (red).

(b) 3Dmedial balls of a 3D box
shape.

(c) 3D medial axis of a 3D box
shape.

Figure 1.2: The MAT in 2D and in 3D for
a box shape.

∗ Sometimes the MAT is referred to as medial axis function, stick figure, skeleton or
surface skeleton. Inventor Harry Blum finally settled on symmetry axis, as he considered
symmetry to be the crucial role of the MAT (Blum73).

cba Ken Arroyo Ohori, Hugo Ledoux and Ravi Peters. This work is licensed under a Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/)
(last update: March 10, 2021)
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medial balls

feature points

medial branches
junctions
medial atoms

medial structure

medial sheets

spoke vectors
separation angle
medial bisector

Symbol Description

�(c, A) medial ball
c medial atom
A radius
p, q feature points
®sp , ®sq spoke vectors
� separation angle
®b medial bisector

Figure 1.3: The geometry of amedial atom.

interior MAT

Grassfire analogy Imagine that everything is made of grass and that all
the points on B are simultaneously set on fire at time C = 0. The
fire spreads evenly to all directions at constant speed. Now, the
MAT is defined as the set of points where the fire front meets itself.
This concept is illustrated in Figure 1.1e, where each contour can
be seen as a fire front at some constant time C. The medial axis is
drawn where the fire front meets itself.

Medial balls A medial ball is a ball that fits completely inside B and
does not contain any other ball that would fit inside B. The MAT
is defined as the set of points that are the centres of all medial balls
of B (see Figure 1.1d). Notice that each medial ball touches Bon at
least two points, called its feature points.

As illustrated in Figure 1.1c, the MAT can be subdivided into medial
branches and junctions. Junctions are locations where three or more
medial branches coincide. The points of the MAT are called medial atoms,
or simply atoms. Observe that if an atom has exactly two feature points, it
is part of a medial branch, and if it has more than two feature points it lies
on a junction or on the tip of a medial branch. The medial branches, its
junctions and how those are are connected define the medial structure.

For a 2D object, such as in Figure 1.1, the medial branches are curves
and the the junctions are points. However, for a 3D object, the medial
branches can also be surfaces (see Figure 1.2c), and the junctions can also
be curves. The branches of the 3D MAT are therefore also called medial
sheets.

1.1.1 Medial geometry

The medial geometry describes how atoms are related to the object
boundary B. It is defined for each medial atom that is part of a medial
sheet. Figure 1.3 illustrates the complete medial geometry of an atom.
The medial ball � has the atom c at its center and has a radius A, ie the
shortest distance from c to B. The medial ball � touches the boundary B

at the feature points p and q. The vectors from c to p and q are called the
spoke vectors, denoted ®sp and ®sq. The angle between the spoke vectors is
called the separation angle, denoted � and the bisector of the spoke vectors
is called the medial bisector, denoted ®b.

Using the medial geometry we can describe a number of interesting
properties of the MAT.

1. Any atom c is always medial to B, ie it is equidistant to the feature
points of c (hence the name of the MAT).

2. The medial ball � is always tangential to B at the feature points.
3. The radius A can be used to define the ‘thickness’ of an object, since

it measured the distance to the ‘middle’ of the object where the
MAT is located.

1.1.2 Exterior MAT and the MAT of a DTM

The MAT can be divided into an interior part and an exterior part. So far
we have only looked at the interior MAT, which consists of medial balls
that reside entirely on the inside of an object. However, in many cases it
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interior

The earth

(a) The interior and exterior of a DTM.

watercourse

buildingshill

(b) For a terrain the MAT is typically subdivided into open clusters that
correspond to features such as hills, buildings and watercourses in the terrain.
Shown here is a vertical cross section of a DTM. Exterior MAT in light blue,
interior MAT in dark blue.

Figure 1.4: Defining interior and exterior for an open surface such as a terrain.

exterior MAT

medial clusters

is also possible to define medial balls that reside entirely on the outside
of an object. That part of the MAT is called the exterior MAT. An object
can only have an exterior MAT if the shape of that object is non-convex,
since for convex object it is not possible to find exterior medial balls with
a finite radius.

The separation between inside and outside is very clear and unambiguous
for a an object with a closed boundary such as the gingerbread man of
Figure 1.1 or for any perfectly manifold boundary. However, for objects
that are not completely closed this separation is less clear, as there could
beMAT sheets that connect the interior and exterior parts though holes in
the boundary surface. In some cases with an open boundary a reasonable
distinction can still be made. For example for a DTM we can follow
the convention that the ‘ground side‘ of the DTM is the interior, and
the ‘sky side’ is the exterior, as follows from Figure 1.4a. Following this
convention, we can still define the interior and exterior MAT of a DTM,
see for instance Figure 1.4b.

1.1.3 Medial clusters

The interior and exterior MAT can consist of multiple disjoint parts
(eg in Figure 1.4b). For closed objects the interior MAT is always one
part, whereas the exterior MAT can be multiple parts depending on
the number of concavities in the object boundary. The disjoint parts are
called medial clusters. Each medial cluster is in fact a set of adjacent sheets
where each adjacency is also a junction between medial sheets.

For objects with open boundaries like DTMs, there can also be multiple
interior medial clusters. In this case one object on the terrain typically
corresponds to one medial cluster (Figure 1.4b). Figure 1.5 also illustrates
how the MAT can thus be used to meaningfully subdivide an object into
parts. For an input that is simply a surface point cloud that happens to
contain several object, we can detect easily these objects by looking at the
medial clusters of its MAT. This effectively decomposes the object into
meaningful sub-objects.
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(a) Surface points. (b) Medial atoms coloured by medial radius using a repeating
colourmap.

(c)Medial sheet segmentation. (d) Medial cluster segmentation.

(e) Interior medial clusters. (f) Surface points corresponding to interior medial clusters.

Figure 1.5: Decomposing an object into parts using the MAT and its interior medial clusters.
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1.2 Computing the MAT

Computing the MAT from the boundary B of an object is typically
done in two steps. During the first step, ie MAT approximation, a noisy
approximation of the MAT is obtained, and during the second step, ie
pruning, the noise is removed.

1.2.1 MAT approximation

The MAT can be approximated in various ways, eg by using voxels and
distance transforms or as a subset of the Voronoi diagram. However, here
we will focus on the so-called shrinking-ball algorithm.

1.2.1.1 The shrinking-ball algorithm

The shrinking-ball algorithm works well for robustly approximating the
MAT of 3D objects that are represented using boundary points, iepoint
clouds. It is a simple and fast algorithm that can be made robust to noise
in the boundary points. The shrinking-ball algorithm takes an oriented
point cloud as input, ie a point cloud that includes a normal vector for
each point. It outputs a disjoint set of medial atoms.

The algorithm is based on the observation that the medial atom corre-
sponding to a boundary point p must be positioned somewhere on the
line ! through the normal ®n of p. This observation is used to restrict
the search space for the medial ball of p to the line !. As illustrated by
Figure 1.6, the algorithm begins with a very large candidate ball for p
that is centered on !. At each consecutive iteration, a new candidate ball
is constructed that is smaller than the previous one and closer to the final
medial ball. Every ball is constructed so that it touches p and is centred
on !. Only the candidate feature point q changes with each iteration. A
new q, denoted qnext, is found by selecting the closest point from the
centre c of the current ball. Using p, ®n, qnext we can compute the centre
of the next ball cnext, at which point we move on to the next iteration.
The algorithm terminates when an empty ball is found, which is the case
when the radius no longer shrinks. Algorithm 1 gives the pseudo-code
for the shrinking-ball algorithm.

(a) Initial ball (b) Second iteration. (c) Third iteration. (d) Fourth iteration.

Figure 1.6: Ball shrinking iterations with the shrinking-ball algorithm. The final iteration yields a medial ball. A legend is given in (b).
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Algorithm 1: The shrinking-ball algorithm.
Input : a KD-tree of the surface point cloud ),

a surface point p
it’s normal vector ®n, and
the initial ball radius A8=8C

Output : the medial ball centre c,
the medial ball radius A

1 A ← A8=8C
2 c← the centre of the ball that touches p is centered on ®n with a

radius A
3 repeat
4 @=4GC ← the nearest point to c, obtained quickly using )
5 A=4GC ← radius of the next ball that touches p and qnext and is

centred on ®n
6 cnext ← centre of the next ball, can be computed with p, ®n, and

A=4GC
7 if A=4GC = A then
8 break
9 c← cnext
10 A ← A=4GC
11 until a break statement is executed

The algorithm is ran for each point in the input point cloud. If the normal
vectors point away from the interior, the interior MAT is computed. And
by flipping the orientation of the normal vector, the exterior MAT can
also be computed. If normals are not available for a point cloud, these
can be estimated using local plane fitting, ie by fitting a plane to the :
nearest neighbours of each boundary point. The vector perpendicular
to that plane then becomes the estimated normal vector. A KD-tree is
typically used to speed up the nearest neighbour searches, both for
normal estimation and the shrinking-ball algorithm. Figure 1.7 gives an
example result of the shrinking-ball algorithm for a terrain point cloud.
Observe how the MAT describes the valleys (exterior MAT) and ridges
(interior MAT) in the terrain with its skeletal structure.

Notice that the shrinking ball algorithm subdivides the output only in
an interior and exterior part based on the point normals in the input. It is
possible to further segment the MAT into for example medial sheets and
medial clusters. This can be achieved for example with a region-growing
segmentation algorithm that uses properties of the medial geometry
(eg the medial bisector). Figures 1.5c and 1.5d show the result of such a
segmentation.

1.2.2 Pruning

Pruning is the process of retracting or removing unimportant branches
from the MAT. It is often necessary because the MAT is unstable, ie it
is extremely sensitive to small bumps in B. As illustrated in Figures 1.8
and 1.9a, tiny deviations in B can lead to big spurious branches in the
structure of the MAT. This is especially problematic when Bhas some
noise as is the case with the typical DTM. The resulting MAT can become
so distorted by the spurious branches that it becomes hard to distinguish
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(a) Interior MAT. (b) Terrain points (c) Exterior MAT

Figure 1.7:MAT approximation (a,c) of a
lidar terrain point cloud (b) obtained with
the shrinking-ball algorithm. Top view.

central MAT sheet

protruding sheets

bumps in surface

(a) Small bumps in the boundary can
cause big spurious branches to appear.
Object boundary drawn in red, MAT
in blue.

(b) Spurious branches can appear in the MAT
due to a small amount of noise in the bound-
ary.

Figure 1.8: Instability of the MAT.

its main medial structure. The main aim of pruning is to remove these
spurious branches.

Most pruning methods are based on properties of the medial geometry.
Based on these properties, an importance measure for each medial atom
is defined, which is then used as a threshold to filter medial atoms. The
resulting (pruned) MAT is usually a subset of the original MAT. Some
methods preserve topology, others do not or do so only up to a certain
level. The main challenge is often selecting the optimal threshold value—
a compromise between removing noisy MAT parts and not removing
fine detail, ie often the endpoints of good MAT branches are also affected
by pruning. Examples of importance measures for pruning are the
separation angle � (recall this is the angle between the spoke vectors)
and the separation distance �, ie the distance between the two feature
points of a medial atom. These values are typically low for noisy parts
of the MAT. Figure 1.9 gives an example of pruning with the separation
distance.
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Figure 1.9: The effect of different levels of
pruning based on the separation distance
� on the MAT.

(a)MAT without pruning (� = 0) (b) Reconstructed object for � = 0.

(c)MAT with medium pruning (� =

6)

(d) Reconstructed object for � = 6.
Despite the pruned MAT, the corre-
sponding boundary remains almost
unchanged.

(e) MAT with strong pruning (� =

10).

(f) Reconstructed object for � = 10.
Notice how the tree is separated from
the the ground and that edges have
become rounder.

1.3 Notes and comments

The Medial Axis Transform was originally introduced in 1967 by Harry
Blum, a biologist (Blum, 1967).

Ma et al. (2012) introduced the shrinking ball algorithm. Peters (2018)
explains how to make the algorithm robust so that it can be successfully
applied to lidar point cloud inputs and how to obtain a sheet and cluster
segmentation using a region-growing approach.

1.4 Exercises
1. Draw the medial axis of a 2D box. Then draw the medial bisectors.

How could the medial bisector be used to distinguish between the
different sheets?

2. For what closed object the MAT is a single point?
3. Do think the MAT could help us to detect thick and thin parts of

an object? If so, how?
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