Generalised and combinatorial
maps

Generalised maps and combinatorial maps are two related data structures
to represent objects of any dimension using a single consistent definition.
2D combinatorial maps are basically the same as most half-edge data
structures, with the minor difference that the links between primitives
are defined in a manner that works consistently in every dimension.
However, they have clear advantages when we move to 3D combinatorial
maps, in which we can break the limits of boundary representation and
can store links between adjacent volumes.

As for generalised maps, they are very similar to the combinatorial maps
of the same dimension, but they avoid the concept of orientation at the
cost of having twice as many primitives. Theoreticians thus mostly focus
on how generalised maps can represent unorientable objects. However,
the most interesting practical aspect about them is that by omitting
orientation, they make building many algorithms easier.

Higher-dimensional generalised and combinatorial maps (ie 4D and
higher) can be used to incorporate other non-spatial features, such as
time and scale, although this is more of a research topic than a practical
application.

1.1 What are generalised and combinatorial
maps?

Generalised maps (g-maps) and combinatorial maps (c-maps or just maps)
are what are known as ordered topological models. These are subdivisions
of space into abstract simplices (Figure 1.1), much like a geometric
triangulation in 2D or a tetrahedralisation in 3D. However, unlike the
latter, the subdivision operation to create an ordered topological model is
a purely combinatorial operation, ie no geometric tests are ever made.

Lesson 5.1

1.1 What are generalised and combi-

1.2 Implementing generalised and

combinatorial maps 6
1.3 Exerciseso v eu... 7
1.4 Notes and comments 7

generalised maps

g-maps

combinatorial maps
c-maps

ordered topological models

simplex

Figure 1.1: An n-dimensional simplex, or
simply n-simplex, is a combinatorial prim-
itive made from a set of n + 1 vertices. A
0-simplex is thus a point, a 1-simplex is a
line segment, a 2-simplex is a triangle, and
a 3-simplex is a tetrahedron. Here they are
shown as if embedded in 3D space (ie R3).

@®® Ken Arroyo Ohori, Hugo Ledoux and Ravi Peters. This work is licensed under a Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/)

(last update: March 5, 2021)

http://creativecommons.org/licenses/by/4.0/

2 1 Generalised and combinatorial maps

Figure 1.2: The barycentric triangulation
interpretation of: (a) a 2D combinatorial
map and (b) a 2D generalised map

barycentric triangulation

2D combinatorial map

2D generalised map

00 0 010 1 0
2 12 1
0 0 01/ \0 1
2 1 1
0 0 0 L 0
2 2 1
0 0 0 1 0

(a) (b)

At this point, it is very important to note that the simplices in an ordered
topological model do not correspond to actual simplices in space, ie they do
not represent actual triangles or tetrahedra that you can point to in a
3D model. However, there are a few geometric interpretations that are
possible, and we will be using one of them to help in understanding,
but please bear in mind that it is slightly incorrect from a theoretical
standpoint.

1.1.1 Darts

The most precise geometric interpretation is as follows: a generalised
or combinatorial map is akin to a barycentric triangulation. Shortly, a
barycentric triangulation of a polygon is a simple way to triangulate a
roughly convex polygon by adding a new vertex at its barycentre, then
creating new triangles by joining this new vertex to every existing edge
in the triangulation, ie forming new triangles with the two vertices on
the ends of every existing edge plus the new vertex at the barycentre.
This method creates more triangles than are absolutely necessary in a
triangulation, but it does so without doing any geometric tests (unlike a
constrained triangulation).

In a 2D combinatorial map, the triangulation that is performed is similar
to what was described above (Figure 1.2a), with the difference that the
new vertex is not really located at the barycentre. In fact, that vertex is not
located anywhere—hence why the simplices created using this process
are called abstract simplices. In the figures, we thus place the new vertex
in a convenient location that avoids visually overlapping simplices, but
this is just an arbitrary choice to make the figures clearer.

In a 2D generalised map, the barycentric triangulation requires an extra
step where we first split every edge into two by adding a vertex at their
barycentres (which is equivalent to a barycentric 1D triangulation of the
edge), and then do the 2D triangulation as described above (Figure 1.2b).
Note that this means that a generalised map has exactly twice as many
simplices as a combinatorial map of the same model.

Now, this is where the ordered part of an ordered topological model
comes in. Every vertex in the simplices that were created can be asso-
ciated with an element of a certain dimension. The original vertices
are zero-dimensional, the new vertices on the edges (for g-maps) are
one-dimensional, the new vertices on the faces are two-dimensional, and
so on. Doing so reveals that:

1.1 What are generalised and combinatorial maps? | 3

() (b) (c)

» every simplex in a 2D generalised map has one vertex of every
dimension (ie 0, 1 and 2), and

» every simplex in a 2D combinatorial map has two zero-dimensional
vertices and one two-dimensional vertex (ie 0, 0 and 2).

In order to get the tetrahedralisation for a 3D generalised or combinatorial
map, we start from the triangulation describing the 2D generalised or
combinatorial map of every face, and then we tetrahedralise by adding
a new vertex in the barycentre of each volume. This new vertex is
connected to every existing triangle to form the new tetrahedra, which
follow the same ordering pattern as before (Figure 1.3). Formulating it in
a dimension-independent way, we have that:

» every simplex in an nD generalised map has one vertex of every
dimension up to n (ie 0,1,2,...,n), and

» everysimplexinan nD combinatorial map has two zero-dimensional
vertices and one one vertex of every dimension from 2 up to # (ie
0,0,2,...,n).

In a generalised or combinatorial map, the primitives that are used to
describe the geometry of objects are precisely these nD abstract simplices,
which are called darts.

1.1.2 Permutations and involutions

Let us define some properties of n-simplices that are important for
generalised and combinatorial maps. An n-simplex can have up ton +1
adjacent other simplices as neighbours, where adjacency is defined as
sharing a common (1 —1)-simplex on its boundary. That is, a line segment
can have up to two adjacent line segments (each sharing a vertex), a
triangle can have up to three adjacent triangles (each sharing an edge),
a tetrahedron can have up to four adjacent tetrahedra (each sharing a
triangular face), and so on. Note that these numbers will be lower for the
simplices on the boundary of the model.

Therefore, a dart in a 2D generalised /combinatorial map will have up to
three neighbouring darts, whereas a dart in a 3D generalised /combinato-
rial map will have up to four neighbouring darts, and these neighbours
will have all but one of the same vertices as the original dart. Since
two adjacent n-simplices will have a common (n — 1)-simplex on their
common boundary, going from a dart to its adjacent neighbour will
therefore switch only one of its vertices. Then, since the ordered property
tells us the exact combination of dimensional elements that any simplex

Figure 1.3: (a) A cube, (b) its barycentric
tetrahedralisation for a 3D combinatorial
map, and (c) one of its simplices showing
the ordered property.

3D generalised map

3D combinatorial map

nD generalised map

nD combinatorial map

dart

4 1 Generalised and combinatorial maps

Figure 1.4: Every connected component in

a combinatorial map has two possible ori-

entations. Here, the arrows are darts. Note
how a 2D combinatorial map is equivalent
to a half-edge data structure.

orientation of a combinatorial map

involution

permutation

(@) (b)

must have, the switch must exchange an element of a certain dimension
for another element of the same dimension (while keeping all of the other
previous elements).

In a generalised map, the operation to change the 0-dimensional element,
known as avp, will thus switch a vertex for another vertex on the same edge,
face and volume. Similarly, the operation to change the 1-dimensional
element (a1) will switch an edge for another edge on the same vertex,
face and volume, the operation to change the 2-dimensional element (a;)
will switch a face for another face on the same vertex, edge and volume,
and the operation to change the 3-dimensional element (a3) will switch
a volume for another volume on the same vertex, edge and face. These
are thus all denoted as «;, where i is the dimension of the element being
switched.

In a combinatorial map, the operations are slightly different because of
the two 0-dimensional elements, which means that changing either 0-
dimensional element will switch an edge for either of its two adjacent edges.
Since having an operation that yields two different results is undesirable,
we therefore have to choose one of these edges as a result of the operation,
which means giving the combinatorial map an orientation (Figure 1.4).
This orientation is defined by ordering the two 0-dimensional elements
in the dart, and as in half-edge data structures, two darts connected by an
involution should have opposite orientations. Since this operation switches
the edges of a dart, it is thus denoted as 1. As for the other operations,
they are defined as in a generalised map, but they are all denoted as f5;,
where i is the dimension of the element being switched.

While the triangulation analogy is useful, visually representing darts as
simplices is cumbersome and it does not work well in 3D. For example,
consider how the tetrahedra in Figure 1.3b visually obstruct each other,
which means that showing a more complex polyhedron than a cube is
not ideal. Because of this, most visualisations of generalised maps and
combinatorial maps skip the vertices for 2-dimensional elements and
higher, resulting in something that looks like a half-edge data structure
(Figure 1.5).

Except for the special case of 1, it is important to note that applying the
operation to switch from a dart to its neighbour twice results in returning
to the same dart. Since such an operation is equal to its own inverse, it is
known mathematically as an involution. As for 1, it forms a loop of darts
around a face that eventually returns to the original dart, and it is thus
known instead as a permutation.

1.1 What are generalised and combinatorial maps? 5

(a)

—m
.. =)

r
&)

1.1.3 Orbits and sewing

Starting from a given dart d, the operation to obtain all the darts connected
to it while following only the permutations/involutions corresponding
to certain dimensions is known as an orbit of d.

Among these orbits, the most important one is the one to obtain all the
darts belonging to a particular cell, ie a vertex, edge, face, or volume. As
we discussed previously, changing the i-dimensional cell (i-cell) of a dart,
ie applying «; or f3;, means switching to an adjacent i-cell. By the opposite
logic, the orbit that obtains all the darts of an i-dimensional cell is the
one that follows all the permutations and involutions except for a; or f;
(Figure 1.6). For an n-dimensional generalised map, we can denote this as
{ag,...,®&i-1,qi1, ..., 0,)(d), and for an n-dimensional combinatorial
map, we can denote this as (B1,. .., Bi-1,Bi+1, ..., Pn)(d).

Note that this means that the objects of any dimension are thus defined
as sefs of darts. While this is normal for faces and volumes in most other
data structures, this applies also to vertices and edges in generalised and
combinatorial maps.

Another important orbit is the one that obtains all the darts belonging
to an i-cell within a j-cell, where i < j. This can be obtained using
the orbit that follows all the permutations and involutions up to j — 1
except for a; or ;. For instance, the darts belonging to an edge within a
single volume (without obtaining the darts of the same edge but on other

Figure 1.5: (a) Three polygons, (b) their
simplices while represented as a 2D gen-
eralised map, and alternative geometric
interpretations of them as (c) a 2D gener-
alised map and (d) a combinatorial map.

orbit

cell

6 1 Generalised and combinatorial maps

Figure 1.6: (a) A 3D generalised map of a
cube, and (b) the orbits that represent one
of its vertices, one of its edges and one of
its faces.

Figure 1.7: A 3-sewing operation to con-
nect two cubes along a common face. Note
that the operation should start from corre-
sponding darts on either volume.

sewing

combinatorial structure

embedding structure

(alr a2> /T
<‘X0r‘?

c

<a01 a2>
| S —_

(@) (b)

[» [] |
L < o El
¢]
] L]
) o @
» SEw { 9
| @
2 ?
», © ® & 768, - E ®© [O
& / o

volumes) are obtained as («p, a2)(d) in a generalised map and (2)(d) in
a combinatorial map.

An important characteristic of orbits is that if they are implemented with
some care, it is possible to use them to iterate over the darts of a cell
in a consistent order. This is the basis of the operation that is used to
construct generalised and combinatorial maps, which is called sewing. In
order to sew together two i-dimensional objects, the i-sewing operation
starts from two corresponding darts on a common (i — 1)-cell but on
different i-cells (Figure 1.7). It then proceeds to do a parallel traversal of
each of their (i — 1)-orbits while connecting corresponding darts with «;
(for a g-map) or f; (for a c-map).

This process can be used to simply connect adjacent i-dimensional objects
together, but it can also be used to create (i + 1)-dimensional objects.
For example, two vertices can be 0-sewn to create an edge (in a g-map),
adjacent pairs of edges in a loop can be 1-sewn to create a face, a set of
faces enclosing a volume can be 2-sewn along their common edges to
create a volume.

1.2 Implementing generalised and
combinatorial maps

With data structures for geometric modelling, it is often useful to sepa-
rate them into two parts: (i) a combinatorial structure that describes the
primitives and the relationships between them, and (ii) an embedding
structure that maps the primitives to space and stores additional infor-
mation (eg attributes). This division exists in many data structures, but it
is particularly clear in generalised and combinatorial maps.

The most common way to implement a generalised or combinatorial
map encodes each dart as a pair of tuples: one for the combinatorial
part and one for its embedding. The combinatorial tuple contains all
the permutations and involutions of the dart in order according to their
dimension. For instance, these can be pointers or memory addresses
of other darts, or something like ids (in which case the tuple should
also contain an id for the dart). When no objects are connected to a dart
through that permutation/involution, a special marker can be used (eg
null or zero).

As for the embedding tuple, it generally consists of links to specific
structures to store the geometry and attributes for the cell of each
dimension that a dart belongs to. For example, the first element of the
tuple could then be a link to a 0-embedding structure, which then contains
a list of attributes about the vertex of that dart, the next element could be
a link to a 1-embedding structure with information about its edge, and
so on. If no embedding information is needed for the cells of a particular
dimension, the corresponding item in the tuple can be omitted, although
it is generally desirable to have at least a basic embedding structure with
an id.

Regarding the geometric information, in the simplest case, where all
geometries are linear (ie line segments, polygons and polyhedra), the
0-embedding structure of a particular vertex can just contain its point
coordinates. From these points, we can linearly interpolate the higher-
dimensional geometries by assuming that line segments connect two
points and polygons are bounded by (roughly coplanar) line segments.
This kind of data structure with the linear geometries assumption is
known as a linear cell complex.

More complex geometries can be however stored in a generalised or com-
binatorial map using the higher-dimensional embeddings. For instance,
we can store the control points for a Bézier curve in its 1-embedding
structure, or the ones for a Bézier surface in its 2-embedding structure.

1.3 Exercises

1. Why do barycentric triangulations only work well with roughly
convex polygons/polyhedra?

2. Look at the differences between g-maps and c-maps. Why is im-
plementing algorithms on c-maps is often much harder than on
g-maps? Think about how this relates to implementing algorithms
on full edge-based data structures vs. half-edge data structures.

3. What are the equivalent operations between the DCEL and a 2D
combinatorial map?

4. Rather than storing links to special embedding structures for each
dimension in the embedding tuple of a dart, it is also possible to
store point coordinates directly. Why is this usually a bad idea?

1.4 Notes and comments

n-dimensional generalised and combinatorial maps were developed by
Lienhardt (1994) as a generalisation of 2D combinatorial maps (Edmonds,

1.3 Exercises

linear geometry

linear cell complex

7

8

1 Generalised and combinatorial maps

1960). Independently, the cell-tuple structure (Brisson, 1989) was de-
veloped as a generalisation of the quad-edge (Guibas and Stolfi, 1985)
data structure in 2D and the facet-edge data structure (Dobkin and
Laszlo, 1987) in 3D. The two data structures (generalised maps and the
cell-tuple) are basically equivalent. However, for a more in-depth look at
combinatorial maps, see Damiand and Lienhardt (2014) instead.

Chains of maps (Elter and Lienhardt, 1994) supplement the approach
used in generalised maps and combinatorial maps with an incidence
graph, which can be used to support non-manifolds, but they are rarely
used because of their extremely high space requirements.

Moka* is a nice free modeller that uses generalised maps. There are also
good implementations of generalised maps' and combinatorial mapst in
CGAL.

*http://moka-modeller.sourceforge.net
* https://doc.cgal.org/latest/Generalized_map/index.html
¥ https://doc.cgal.org/latest/Combinatorial_map/index.html

http://moka-modeller.sourceforge.net
https://doc.cgal.org/latest/Generalized_map/index.html
https://doc.cgal.org/latest/Combinatorial_map/index.html

Bibliography

Brisson, E. (1989). Representing geometric structures in d dimensions:
topology and order. Proceedings of the 5th annual symposium on Computa-
tional geometry. New York, NY, USA: ACM, pp. 218-227.

Damiand, G. and P. Lienhardt (2014). Combinatorial Maps: Efficient Data
Structures for Computer Graphics and Image Processing. CRC Press.

Dobkin, D. P. and M. J. Laszlo (1987). Primitives for the Manipulation of
Three-Dimensional Subdivisions. Proceedings of the 3rd Annual Sympo-
sium on Computational Geometry. ACM, pp. 86-99.

Edmonds, J. (1960). A Combinatorial Representation of Polyhedral Sur-
faces. Notices of the American Mathematical Society 7.

Elter, H. and P. Lienhardt (1994). Cellular complexes as structured semi-
simplicial sets. International Journal of Shape Modeling 1.2.

Guibas, L. J. and J. Stolfi (1985). Primitives for the manipulation of
general subdivisions and the computation of Voronoi diagrams. ACM
Transactions on Graphics 4.2, pp. 74-123.

Lienhardt, P. (1994). N-dimensional Generalized Combinatorial Maps
and Cellular Quasi-Manifolds. International Journal of Computational
Geometry and Applications 4.3, pp. 275-324.

Bibliography

	Generalised and combinatorial maps
	What are generalised and combinatorial maps?
	Implementing generalised and combinatorial maps
	Exercises
	Notes and comments

