
textured mesh

Semantic 3D city models Lesson 4.1

1.1 Semantic 3D city models . . . 1
1.2 CityGML data model . . . . . 3
1.3 XML-encoded CityGML . . . 6
1.4 CityJSON . . . . . . . . . . . . . 8
1.5 Other formats . . . . . . . . . . 11
1.6 Notes and comments . . . . . 13
1.7 Exercises . . . . . . . . . . . . . 13

A 3D city model is a digital representation, with three-dimensional

geometries, of the common objects in an urban environment, with

buildings usually being the most prominent objects.

Because typical 3D city models are reconstructed/derived from various

acquisition techniques, their structure, format, and characteristic will

greatly vary. As an example, a 3D city model can be reconstructed

with methods such as these: photogrammetry, laser scanning, extrusion

from 2D footprints, conversion from architectural models and drawings,

procedural modelling, volunteered geoinformation, etc.

This lesson discusses the main 3D city models formats, and focuses on

semantic 3D city models, which are useful in a variety of applications.

1.1 Semantic 3D city models

Consider the 3D city model of Helsinki in Figure 1.1a (one part of it),

which was reconstructed by dense matching of aerial images. The model

is a textured mesh, formed by triangles to which a texture is attached

(the triangles are visible in in Figure 1.1b). If you were asked to count the

number of buildings (or cars, or dormers in a given building) you would

surely just have to zoom in on the model, look at it, and then you could

give the answer. However, for a computer, this 3D city model is simply

represented as a series of triangles to which a texture is attached; the

notion of ‘building’ (or ‘car’, or any other object) is thus not available. As

a result, a computer cannot automatically answer these simple questions.

It should be observed that there exist algorithms to segment and classify

textured meshes into objects, but these are not fully automatic and are

beyond the scope of this course. Other simple questions that a human

could answer but a computer cannot:

(a) (b) the edges of the triangles are highlighted in orange.

Figure 1.1: Part of the 3D city model of Helsinki, Finland.

cba Ken Arroyo Ohori, Hugo Ledoux and Ravi Peters. This work is licensed under a Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/)
(last update: March 1, 2021)

http://creativecommons.org/licenses/by/4.0/


2 1 Semantic 3D city models

Semantics Geometry

Building
Installation

Building

BuildingPart

BuildingPart
Building

BuildingPart BuildingPart

Roof
Surface …

Wall
Surface

Building
Installation

Wall
Surface

Roof
Surface

Wall
Surface …

Door Door Window Window

CompositeSolid

Solid Solid

Polygon MultiPolygon

Polygon

…

…

…

Figure 1.2: A building is semantically decomposed into different objects, and each objects is defined with geometry.

Figure 1.3: Part of the semantic 3D city

model of The Hague, in the Netherlands.

Notice that each building is decomposed

into its semantic surfaces (wall, roof, and

ground) and there are attributes for each.

The model is not textured, but semantic

models can have textures too.

spatially coherent

1. howmanywindows does the main façade of a given building have?

2. how many floors does a given building have?

3. can the local park be seen from the second floor of a given building?

A semantic 3D city model is a data model where the relevant objects
(and their sub-parts) are labelled with their meaning and have attributes

attached to them. Conceptually, it means that a city is decomposed into

classes that we deem relevant for certain applications, for instance the

city is decomposed into the classes ‘building’, ‘road’, ‘tree’, ‘lamppost’,

etc and each of the objects has its own 3D geometry and potentially

(thematic) attributes (eg the owner of a building, the name of street, the

city identifier for a lamppost, etc).

Observe also, as shown in Figure 1.2 for one building, that the objects

can be further decomposed into semantically homogeneous parts, in 3D

city modelling these are often the parts of a buildings (eg an extension to

a house) and the type of surfaces (roof, façade, windows, doors).

The decomposition is thus hierarchical, and the relationships between

the classes are stored (eg a building is composed of parts, which are

formed of walls, which have windows). We say that a 3D city model is

spatially coherent is the two decompositions are coherent.

Figure 1.3 shows one semantic model being visualised in a viewer, notice

that the user can identify the roof surfaces and that different attributes

are available. Semantic 3D models can also be textured.

To avoid the fact that every city/country defines its own classes to

decompose a city (eg a ‘building’ class can be a ‘house’ class in another



1.2 CityGML data model 3

city), semantic models prescribe the classes and often even the thematic

attributes that should be stored.

1.2 The CityGML data model

CityGML is an open data model to represent semantic 3D models of

cities and landscapes, and it is standardised by the Open Geospatial

Consortium; its official website is https://www.opengeospatial.org

/standards/citygml. Its first version (v1.0.0) was released in 2008, and

the current version (v2.0.0) in 2012; the upcoming version (v3.0) has been

in draft for years, and will be released eventually.

The classes stored in CityGML are grouped into different modules. These

are:

I Appearance: textures and materials for other types

I Bridge: bridge-related structures, possibly split into parts

I Building: the exterior and possibly the interior of buildings with

individual surfaces that represent doors, windows, etc

I CityFurniture: benches, traffic lights, signs, etc

I CityObjectGroup: groups of objects (any types)

I Generics: other types that are not explicitly covered

I LandUse: areas that reflect different land uses, such as urban,

agricultural, etc

I Relief: the shape of the terrain
I Transportation: roads, railways and squares

I Tunnel: tunnels, possibly split into parts

I Vegetation: areas with vegetation or individual trees

I WaterBody: lakes, rivers, canals, etc

Figure 1.4 shows one part of the CityGML UML models.

1.2.1 Levels-of-detail (LoDs)

One particularity of CityGML is that it prescribes the different standard

levels of detail (LoDs) for 3D objects, which allows us to represent objects

for different applications and purposes.

For each of the classes defined by CityGML, five LoDs can be defined.

Figure 1.5 shows the ones for the buildings, and they are as follows:

LoD0 is a horizontal polygon representing the footprint (at the elevation

of the terrain) and optionally a horizontal polygon representing

the horizontal roof. Such models represent the transition from 2D

to 3D GIS, and they do not contain volumetric geometries.

LoD1 is a block model, with an horizontal and planar roof that is usually

derived by extruding a footprint to a given height. LoD1 models

are easy to reconstruct: the footprint of a building, readily available

in many countries, can be extruded to its height. The height can be

the average (or median) of all the lidar points inside the footprint.

https://www.opengeospatial.org/standards/citygml
https://www.opengeospatial.org/standards/citygml


4 1 Semantic 3D city models

 CityGML Core module, part 2  

 

Copyright © 2012 Open Geospatial Consortium, Inc. All Rights Reserved.  8 
 

 

 

+creationDate : xs::date [0..1]
+terminationDate : xs::date [0..1]
+relativeToTerrain : RelativeToTerrainType [0..1]
+relativeToWater : RelativeToWaterType [0..1]

<<Feature>>
_CityObject

<<Feature>>
CityModel

<<Feature>>
_Site

<<Feature>>
wtr::_WaterObject

<<Feature>>
frn::CityFurniture

<<Feature>>
luse::LandUse

<<Feature>>
bldg::_AbstractBuilding

<<Feature>>
veg::_VegetationObject

<<Feature>>
dem::ReliefFeature

<<Feature>>
tran::_TransportationObject

<<Feature>>
grp::CityObjectGroup

<<Feature>>
gen::GenericCityObject

+theme : xs::string [0..1]

<<Feature>>
app::Appearance

<<Feature>>
gml::_Feature

<<Feature>>
gml::_FeatureCollection

<<Geometry>>
gml::_Surface

+orientation : gml::SignType [0..1]

<<Geometry>>
gml::OrientableSurface

<<Geometry>>
tex::TexturedSurface

+name : xs::string [1]

<<DataType>>
gen::_genericAttribute

+value : xs::integer [1]

<<DataType>>
gen::intAttribute

+value : xs::string [1]

<<DataType>>
gen::stringAttribute

+value : xs::double [1]

<<DataType>>
gen::doubleAttribute

+value : xs::date [1]

<<DataType>>
gen::dateAttribute

+value : xs::anyURI [1]

<<DataType>>
gen::uriAttribute

+value : gml::MeasureType [1]

<<DataType>>
gen::measureAttribute

+codeSpace : xs:anyURI [0..1]

<<DataType>>
gen::genericAttributeSet

<<Feature>>
tun::_AbstractTunnel

<<Feature>>
brdg::_AbstractBridge

*

*

cityObjectMember

*

*

generalizesTo

*

*

app::appearanceMember

*

1

gen::_genericAttribute

0..2

1

baseSurface

1..*

0..1

gen::_genericAttribute

* *

app::appearance

Visual Paradigm for UML Standard Edition(Technical University Berlin)

Figure 1.4: Overview of the UML model for the core of CityGML. (Figure © 2012 Open Geospatial Consortium, Inc.)

Figure 1.5: The five LODs of CityGML

2.0. The geometric details and the seman-

tic complexity increase, ending with the

LOD4 containing indoor features.

Figure 1.6: Two buildings represented in

CityGML as LoD2 models. Both are valid

LoD2 models.

LoD2 the generalised roof shape and larger roof superstructures are

present. As such, LoD2models are useful for rooftop solar potential

estimations. They are usually obtained with photogrammetric

techniques, and, in some cases, may be derived automatically (see

Lesson 2.1).

LoD3 is a detailed architectural model containing openings (windows

and doors), chimneys, and other façade details. Models at LoD3 are

usually obtained with a conversion from BIM models or from ter-

restrial laser scanning. The presence of windows and other details

makes them useful in applications such as energy simulations.

LoD4 is an LoD3 model containing indoor features such as rooms and

furniture. LoD4 marks the boundary between GIS and BIM. They

can only be constructed by converting BIM datasets (or CAD) to

CityGML, and are in practice basically never used (since BIM

software are better at processing indoor models than GIS software).

While the fiveLoDs are supposed to informusers about the representation

of the data, in practice they are too generic (not precise enough) and can

be ambiguous. For instance, as Figure 1.6 shows, a building with roof

overhangs can bemodelled as LoD2with them, or without (and therefore

the size of its footprintwould be larger). Both are technically “valid” LoD2

models, but the acquisition methods required differ significantly. The

model on the right can be acquired with aerial photogrammetry or aerial



1.2 CityGML data model 5

Figure 1.7: The improved LoDs for build-

ings; they are generally referred to as the

TUDelft LoDs.

ISO 19107

lidar (the walls are derived as projections from the roof outline), while the

model on the left probably needs two acquisition techniques: the walls

are at their actual location (ground survey was necessary) and the roof

overhangs are explicitly present. To remedy to this situation, improved

LoDs for buildings have been proposed at TU Delft, see Figure 1.7.

Notice that while each of the CityGML classes can be represented with 5

different LoDs, only those for buildings are prescribed and documented.

For trees and roads, practitioners can decide that a given representation

is ‘LoD2’, but that would purely indicate that the LoD is higher than a

LoD1 one. There are efforts (scientific papers) to document these, but

they have not been standardised yet.

1.2.2 Geometries

CityGML uses the ISO 19107 geometric primitives for representing the

geometry of its 3D objects. While the ISO 19107 primitives do not need

to be linear or planar, ie curves defined by mathematical functions are

allowed, CityGML uses a subset of ISO 19107, with the following two

restrictions: (1) GM_Curves can only be linear (thus only LineStrings

and LinearRings are used); (2) GM_Surfaces can only be planar (thus
Polygons are used).

See Lesson 3.2 for the details of ISO 19107.

1.2.3 Textures and materials

The 3D geometries can be supplemented with textures and/or colours

(called materials since different parameters like transparency can be

defined) to give a better impression of their appearance.



6 1 Semantic 3D city models

GML specifications: https://www.open

geospatial.org/standards/gml

CityGML reuses known and used standards in other fields for the

appearances. The material is represented with the X3D specifications,

and the texture with the COLLADA standard.

1.2.4 Extensions to the core data model with ADEs

The CityGML data model prescribes a certain number of classes, but

sometimes practitioners may want to model additional objects. For this,

CityGML has the concept of ADEs (application domain extensions). An

ADE is defined as an extension/extra to the core data model, inheritance

is used to refine the classes of CityGML (add attributes for instance) or

to define entirely new classes.

CityGML has XML files and the schemas can be extended, see Section 1.3

for more details.

CityJSON has a similar mechanism, see below.

1.2.5 Encodings

Based on the CityGML data model, there exist three encodings:

1. XML/GML-based encoding, also called “CityGML”

2. CityJSON

3. a database schema called 3DCityDB, which can be implemented

both for PostgreSQL and Oracle Spatial. This is not an official

standard. Details at https://www.3dcitydb.org/3dcitydb/

We discuss in the following the first two.

1.3 The XML encoding of CityGML

So far, the only “approved” encoding of the CityGML data model is

the XML-based encoding described in the official standard specification.

Notice that “CityGML” refers to both the data model and the XML

encoding, which can admittedly be very confusing.

CityGML is actually an application schema of GML, which is the Geogra-
phyMarkup Language, also standardised by the OGC. This can be observed

in the UML diagram in Figure 1.4: a city object (class _CityObject) inher-

its from the generic gml::_Feature in GML, which is the parent class

for all geographic features.

As shown in Figure 1.8, CityGML datasets consist of a set of plain text

files (XML files) and possibly some accompanying image files that are

used as textures. Each text file can represent a part of the dataset, such

as a specific region, objects of a specific type (such as a set of roads), or

a predefined LoD. The structure of a CityGML file is a hierarchy that

ultimately reaches down to individual objects and their attributes.

Because CityGML files are XML files, they can be parsed by any XML-

parser (there are many available), and also can be modified with a text

editor.

https://www.opengeospatial.org/standards/gml
https://www.opengeospatial.org/standards/gml
https://www.3dcitydb.org/3dcitydb/


1.3 XML-encoded CityGML 7

1 <?xml version="1.0" encoding="UTF-8"?>
2 <CityModel xmlns:xlink="http://www.w3.org/1999/xlink"
3 xmlns:gml="http://www.opengis.net/gml"
4 xmlns:gen="http://www.opengis.net/citygml/generics/1.0"
5 xmlns="http://www.opengis.net/citygml/1.0"
6 xsi:schemaLocation="http://www.opengis.net/citygml/1.0">
7 <cityObjectMember>
8 <bldg:Building gml:id="9a06451677c7">
9 <bldg:function>1070</bldg:function>
10 <bldg:lod1Solid>
11 <gml:Solid>
12 <gml:exterior>
13 <gml:CompositeSurface>
14 <gml:surfaceMember>
15 <gml:Polygon>
16 <gml:exterior>
17 <gml:LinearRing>
18 <gml:pos>0.0 0.0 0.0</gml:pos>
19 <gml:pos>0.0 1.0 0.0</gml:pos>
20 <gml:pos>1.0 1.0 0.0</gml:pos>
21 <gml:pos>1.0 0.0 0.0</gml:pos>
22 <gml:pos>0.0 0.0 0.0</gml:pos>
23 </gml:LinearRing>
24 </gml:exterior>
25 </gml:Polygon>
26 </gml:surfaceMember>
27 ...
28 </bldg:Building>
29 <bldg:Building gml:id="jdhd76sa">
30 ...
31 </bldg:Building>
32 </cityObjectMember>
33 </CityModel>

Figure 1.8: Part of a CityGML file contain-

ing 2 buildings.

The schema of CityGML is encoded in XML files called “XSD” (XML

Schema Definition). This way, software can validate whether the syntax

of a file corresponds to that of the data model, for instance it can defined

that a Building must have a geometry, and that a set of attributes are

mandatory.

CityGML ADEs. When distributing files containing ADEs, usually the

extensions to the data model must be made available; with XML-based

CityGMLfiles those areXMLSchemafiles (.xsdfiles). City data contained

in a CityGML file can be objects from the core model (eg buildings) and

new objects defined in an ADE (eg sheds could be defined).

1.3.1 The drawback of the XML encoding

The vast majority of the efforts concerning CityGML have been spent on

developing the concepts and the data model, and it appears that very

little attention has been paid to deriving a usable exchange format. Indeed,

the XML encoding is verbose, hierarchical, complex, and not adapted for

the web. These drawbacks hinder the use of CityGML in practice, which

can be observed by: (1) the low number of software packages supporting

full read/write/edit capabilities for CityGML files; and (2) the relatively

low number of datasets stored in CityGML files.

CityGML files are notoriously known to be very difficult to parse and

to extract information from. This has to do with the fact that XML itself

requires special libraries to handle the data, thatGMLhas several different



8 1 Semantic 3D city models

JSON: JavaScript Object Notation: http:

//json.org

Figure 1.9: The implemented CityJSON

classes (same name as CityGML classes)

are divided into 1st and 2nd levels.

ways to store the same geometry
∗
, and that CityGML files have deep

hierarchies (which are problematic for DBMS implementation, which

tend to be ‘flat’) and several XLinks.

1.4 CityJSON

CityJSON (currently at version 1.0), is a JSON encoding of the CityGML

2.0.0 data model. JSON is, like GML, a text-based data exchange format

that can be read both by humans and machines.

It has a number of advantages, over GML, for several reasons. First, and

foremost, JSON dominates the web: nowadays if two applications need to

exchange data theywill most likely use JSON (over XML). Of the tenmost

popular APIs on the web, only one exposes its data in XML, the others

all use JSON
†
. Second, JSON is predominantly favoured by developers

(on Stack Overflow it is by far the most discussed exchange format) which

means that more libraries and software will support it, and these will

most likely be maintained. Finally, JSON is based on two data structures

that are available in virtually every programming language (more details

below), and we can thus structure a file in a way that developers would

build and index in memory the objects (developers then do not need to

use external libraries, all features and geometries are already indexed,

and ready to use).

A CityJSON file represents a given geographical area; the file contains

one JSON object of type "CityJSON" and would typically contain the

following JSON properties:

1 {

2 "type": "CityJSON",

3 "version": "1.0",

4 "CityObjects": {},

5 "vertices": [],

6 "appearance": {}

7 }

1.4.1 City objects are “flattened out”

The property "CityObjects" contains a JSON dictionary where the

properties are the identifiers of the city objects (IDs). The schema of

CityGML has been flattened out and all hierarchies removed. Figure 1.9

shows the city objects that are supported in CityJSON, both 1st- and

2nd-level city objects are stored in the dictionary "CityObjects".

As an example, for a Building containing 2 BuildingParts, the 3 objects

will be represented at the same level and linked by their IDs.

1 "CityObjects": {

2 "id-1": {

3 "type": "Building",

4 "attributes": {...},

5 "children": ["id-2", "id-3"],

∗
See the GML Madness blog post where 25 different ways to store a simple square in GML

are described, a developer implementing a parser for CityGML would have to support

them all, and more for the primitives in higher dimensions! (https://erouault.blogs
pot.com/2014/04/gml-madness.html)

† https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html

http://json.org
http://json.org
https://erouault.blogspot.com/2014/04/gml-madness.html
https://erouault.blogspot.com/2014/04/gml-madness.html
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html


1.4 CityJSON 9

6 "geometry": [{...}]

7 },

8 "id-2": {

9 "type": "BuildingPart",

10 "parents": ["id-1"],

11 "geometry": [{...}]

12 ...

13 },

14 "id-3": {

15 "type": "BuildingPart",

16 "parents": ["id-1"],

17 "geometry": [{...}]

18 ...

19 }

20 }

Each city object can have a "parents" and/or a "children" property,

and this is how in the snippet the building "id-1" is linked to its 2 parts.

The fact that a dictionary is usedmeans that developers have direct access

to the city objects through their IDs (and also in constant time if a hash

map is used to implement the dictionary).

A city object can be of any of the types defined in Figure 1.9, and each

of them must have the same structure, and at a minimum contain a

"geometry" property. If attributes are to be stored, they have to be in

the "attributes" property. This simplifies the work of the developer

because there is a single point of entry for all geometries and attributes,

unlike with XML-encoded CityGML.

1 {

2 "type": "PlantCover",

3 "attributes": {

4 "averageHeight": 11.05,

5 "colour": "green"

6 },

7 "geometry": [{...}]

8 }

1.4.2 Geometry

CityJSON defines the same 3D geometric primitives used in CityGML,

with the same restrictions for linearity/planarity. However, since they are

rarely used in a 3D context, Point and LineString only have their Multi*

counterparts; a single Point is a MultiPoint with only one object. When a

geometry is defined, it must contain a value for the LoD. In order to avoid

ambiguities, we encourage the use of the TUDelft LoDs (see above), over

the five standard CityGML ones. City Object can have several LoDs, and

thus CityJSON, as is the case for CityGML, allows us to store concurrently

several LoDs for the same object.

1 {

2 "type": "MultiSurface",

3 "lod": 2.1,

4 "boundaries": [

5 [[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]]

6 ]

7 }

It should be noticed that CityJSON uses a different approach from

(City)GML to store the (G, H, I) coordinates of geometric primitives.

A geometric primitive does not list all the coordinates of its vertices,



10 1 Semantic 3D city models

OBJ specifications: https://en.wikiped

ia.org/wiki/Wavefront_.obj_file

X3D specifications: https://en.wikiped

ia.org/wiki/X3D

COLLADA specifications: https://www.

khronos.org/collada/

rather the coordinates of the vertices are stored in a separate array (the

"vertices" property of the CityJSON object), and geometric primitives

refer to the position of a vertex in that array.

1 "vertices": [

2 [8623.234, 487111.009, 13.92],

3 [8829.456, 488115.134, 10.07],

4 [8554.508, 487229.995, 19.61],

5 ...

6 [8523.134, 487625.134, 2.03]

7 ]

The indexing mechanism of the format Wavefront OBJ is reused, because
it has been used for many years, with success, in the computer graphics

community. There are several advantages to this approach. First, the files

can be compressed: 3D vertices are often shared by several surfaces, and

repeating them can be costly (especially if they are very precise, often sub-

millimetre is used). Second, this increases the topological relationships

that are explicitly stored in the file, and several operations can be sped

up and made more robust (eg are two buildings adjacent?). Third, it is

very easy to convert to a representation listing all coordinates; the inverse

is not true.

The geometry is based on an enumeration of the vertices forming each

ring of a surface, as follows. A "MultiSurface" has an array containing

surfaces, where each surface is modelled by an array of arrays, the first

array being the exterior boundary of the surface, and the others the

interior boundaries. A "Solid" has an array of shells, the first array being

the exterior shell of the solid, and the others being the interior shells;

each shell has an array of surfaces, modelled in the exact same way as a

"MultiSurface". Concrete examples of each geometric type are given

at https://www.cityjson.org/help/dev/geom-arrays/. Notice that

unlike with (City)GML, there is only one variation per geometry type,

which (greatly) simplifies the life of developers.

1 {

2 "type": "Solid",

3 "lod": 2.2,

4 "boundaries": [

5 [ [[0, 3, 2, 1, 22]], [[4, 12, 123, 5, 6, 7]], [[0, 1, 5, 4]], [[1,

2, 6, 5]] ],

6 [ [[240, 243, 124]], [[244, 246, 724]], [[34, 414, 45]], [[111, 246,

5]] ]

7 ]

8 }

1.4.3 Appearance

Both textures and materials are supported, and the same mechanisms as

CityGML are used for these. The material is represented with the X3D

specifications, as is the case for CityGML. For the texture, the COLLADA

specifications are reused, as is the case for CityGML.

1.4.4 Extension to the core model

CityJSON also supports extensions to the core data model of CityGML

for specific applications and use-cases. They are simply called Extensions

https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/X3D
https://en.wikipedia.org/wiki/X3D
https://www.khronos.org/collada/
https://www.khronos.org/collada/
https://www.cityjson.org/help/dev/geom-arrays/


1.5 Other formats 11

EPSG codes: https://epsg.io

and are defined as simple JSON files, and support the addition of new

feature types, as well as the addition of new attributes for features and

for datasets. See https://www.cityjson.org/specs/#extensions for

more details.

1.4.5 CityGML support

It should be observed that, at this moment, CityJSON is not an official

OGC standard. CityJSON was started, and is maintained, by the 3D

geoinformation group at TU Delft. Others have since joined its devel-

opment. It was developed to simplify the tasks of developers and to

foster the use of the official data model in practice, but with a usable and

simple-to-use encoding.

CityJSON implements most of the data model, and all the CityGML

modules have beenmapped to CityJSON objects. However, for the sake of

simplicity and efficiency, some modules and features have been omitted

and/or simplified. If a module is supported, it does not mean that there

is a 1-to-1 mapping between the classes and features in CityGML and

CityJSON, but rather that it is possible to represent the same information,

but in adifferentmanner. CityJSON thus conforms to a subset ofCityGML,

although technically onlyXML-encodedCityGMLfiles can be conformant

to the specifications of CityGML.

The main features that are not supported are:

I The LoD4 of CityGML, which was mostly designed to represent

the interior of buildings (including details and furniture), is not

implemented. The main reason is that currently there are virtually

no datasets having LoD4 buildings. If there is a need in the future,

the concepts and the implementation would follow the same rules

described above.

I Several CRSs in the same datasets. In CityJSON, all geometries

in a given CityJSON object must use the same CRS. In CityGML,

3 adjacent buildings can all have different CRSs, and some of

the geometries to represent the walls can be in yet another CRS

(although admittedly it is seldom used!).

I Arbitrary coordinate reference systems (CRSs). Only an EPSG code

can be used.

I Identifiers for low-level geometries. In CityGML most objects can

have an ID (usually gml:id). That is, not only can one building have

an ID, but also each of the 3D primitives forming its geometry can

have an ID. In CityJSON, only city objects and semantic surfaces

can have IDs.

I Raster files for the relief. Only TINs are at this moment supported.

1.5 Other formats for 3D city modelling

We describe briefly in this section a few formats and standards that are

related to 3D city modelling and that are sometimes used in practice.

Those generally focusmostly on geometries, but lack support for semantics

and attributes (to a varying degree). They are thus usually less suitable

https://epsg.io
https://www.cityjson.org/specs/#extensions


12 1 Semantic 3D city models

OBJ specifications: http://paulbourke

.net/dataformats/obj/

OFF specifications: https://en.wikiped

ia.org/wiki/OFF_(file_format)

glTF specifications: https://www.khrono

s.org/gltf/

CesiumJS: https://cesium.com/cesiu

mjs/

three.js: https://threejs.org/

and less agile than the family of CityGML formats, that is they can be

useful for a few use-cases.

1.5.1 Standard computer graphics formats: OBJ, PLY,
OFF, etc

There exist several similar formats in computer graphics for storing and

representing meshes (which are usually triangular meshes, but polygons

can also be represented):

OBJ (Wavefront Object) is one of the most popular text-based formats

in the 3D graphics community. It has a simple structure where first the

vertices are listed, and then each polygon is listed, as a list of references to

the vertex ID (its position in the list of vertices). The OBJ format can also

encode colours and texture information,which are stored in a separate file

(a .mtlfile,Material Template Library). Attributes for specific polygons or

groups of polygons is only possible by using the comments and grouping

possibilities (as a hack), there are no standardised and documented ways

to do so.

OFF is a simpler format: only polygons can be represented, optionally

with their colours.

PLY is based on the same ideas for the geometries, and attributes can also

be attached to vertices and polygons. (See the Computational modelling of
terrains book Section 12.1).

Notice that neither of these formats allow us to store an ISO 19107 solid

having inner shells and attributes/semantics for different parts/ele-

ments.

1.5.2 glTF (GL Transmission Format)

glTF is a JSON-based open 3D format by Khronos Group for the exchange

of 3D models. It also has a binary encoding for storing mesh geometry

and animation data. It provides compact representation of geometries,

and small file sizes.

It used for instance in CesiumJS (which supports semantic 3D citymodels

to some extents), and in other libraries like three.js.

1.5.3 LandInfra & InfraGML

LandInfra is a relatively new OGC open standard for land and infrastruc-

ture features, integrating concepts from IFC/BIM (see Lesson 6.2) and

CityGML.

It actually partially overlaps with CityGML: it contains the thematic

classes ‘Building’, ‘Road’ and ‘Railway’ (Transportation in CityGML),

and ‘LandSurface’ (ReliefFeature in CityGML). However, it has a

more detailed representation for land and infrastructure features, eg

administrative units, ownership rights, spatial units for land use (land

parcels and the legal spaces of buildings), surveying and representation,

alignment for roads and railways, subsurface models for terrain, etc

http://paulbourke.net/dataformats/obj/
http://paulbourke.net/dataformats/obj/
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://www.khronos.org/gltf/
https://www.khronos.org/gltf/
https://cesium.com/cesiumjs/
https://cesium.com/cesiumjs/
https://threejs.org/


1.6 Notes and comments 13

InfraGML is the GML-based encoding of LandInfra, and the only one

standardised.

LandInfra is a relatively young standard and at present it is difficult to

identify any concrete examples of its usage in practice; the majority of

citations about LandInfra describe the need to consider LandInfra in

future work.

1.6 Notes and comments

The official specifications of CityGML (in PDF format) are available at

https://www.opengeospatial.org/standards/citygml. A summary

is available in Gröger and Plümer (2012).

(Stadler and Kolbe, 2007) first proposed and described the semantic and

spatial decompositions of a city, and how keeping the two decomposition

aligned has several advantages in practice.

Biljecki et al. (2015) describe and list 30 use-cases and 100 applications

that make use of semantic 3D city models.

See Biljecki et al. (2018) for an overview of the existing ADEs.

CityJSON specifications, examples datasets, tutorials, and software are

available at https://cityjson.org. Ledoux et al. (2019) discuss in

details the encoding and give concrete examples why they believe it is

a superior encoding to XML for the CityGML data model; parts of this

lesson was taken and adapted from that paper.

Airaksinen et al. (2019) describe the efforts and workflows used by the

city Helsinki to built both a textures mesh and a semantic 3D city models

of their city. Details about how the model is used in practice are also

given.

Kumar et al. (2019) describe the role and position of LandInfra with

respect to CityGML and BIM/IFC.

For the description of LoD of other classes then buildings, see Kumar et al.

(2019) for terrains, Labetski et al. (2018) for roads, and Ortega-Córdova

(2018) for trees.

1.7 Exercises
1. It is stated that a given CityJSON file will be on average 6X com-

pacter than an equivalent CityGML file. Explain why CityJSON

files are compacter.

2. Build manually a CityJSON file of a unit cube that represent a

LoD2 building, and assign to its surfaces the correct semantics

(roof, ground, façade). Add a few random attributes to the building.

Make sure your file is valid by following that tutorial: https:

//www.cityjson.org/tutorials/validation/

3. What would be the “best” format to store the textured mesh of

Helsinki (in Figure 1.1)?

https://www.opengeospatial.org/standards/citygml
https://cityjson.org
https://www.cityjson.org/tutorials/validation/
https://www.cityjson.org/tutorials/validation/


14

Bibliography

Airaksinen, E., M. Bergström, H. Heinonen, K. Kaisla, K. Lahti, and J.

Suomisto (2019). The Kalasatama digital twins project—The final report of
the KIRA-digi pilot project. Tech. rep. City of Helsinki. url: https://w

ww.hel.fi/static/liitteet-2019/Kaupunginkanslia/Helsinki3

D_Kalasatama_Digital_Twins.pdf.

Biljecki, F., K. Kumar, and C. Nagel (2018). CityGMLApplication Domain

Extension (ADE): overview of developments. Open Geospatial Data,
Software and Standards 3.1.

Biljecki, F., J. Stoter, H. Ledoux, S. Zlatanova, and A. Çöltekin (2015).

Applications of 3D City Models: State of the Art Review. ISPRS
International Journal of Geo-Information 4.4, pp. 2842–2889.

Gröger, G. and L. Plümer (2012). CityGML—Interoperable semantic 3D

city models. ISPRS Journal of Photogrammetry and Remote Sensing 71,

pp. 12–33.

Kumar, K., A. Labetski, K. Arroyo Ohori, H. Ledoux, and J. Stoter (2019).

The LandInfra standard and its role in solving the BIM-GIS quagmire.

Open Geospatial Data, Software and Standards 4.5.
Labetski, A., S. van Gerwen, G. Tamminga, H. Ledoux, and J. Stoter (2018).

A proposal for an improved transportation model in CityGML. ISPRS -
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences. Vol. XLII-4/W10, pp. 89–96.

Ledoux, H., K. A. Ohori, K. Kumar, B. Dukai, A. Labetski, and S. Vitalis

(2019). CityJSON: a compact and easy-to-use encoding of the CityGML

data model. Open Geospatial Data, Software and Standards 4.4.
Ortega-Córdova, L. (2018). Urban vegetation modeling 3D levels of detail.

MA thesis. MSc thesis in Geomatics, Delft University of Technology.

Stadler, A. and T. H. Kolbe (2007). Spatio-semantic coherence in the

integration of 3D city models. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences. Proceedings of the WG
II/7 5th International Symposium Spatial Data Quality 2007 with the theme:
Modelling qualities in space and time. Ed. by A. Stein. Enschede, the

Netherlands, p. 8.

https://www.hel.fi/static/liitteet-2019/Kaupunginkanslia/Helsinki3D_Kalasatama_Digital_Twins.pdf
https://www.hel.fi/static/liitteet-2019/Kaupunginkanslia/Helsinki3D_Kalasatama_Digital_Twins.pdf
https://www.hel.fi/static/liitteet-2019/Kaupunginkanslia/Helsinki3D_Kalasatama_Digital_Twins.pdf

	Semantic 3D city models
	Semantic 3D city models
	CityGML data model
	XML-encoded CityGML
	CityJSON
	Other formats
	Notes and comments
	Exercises


