
three-dimensional Euclidean space

p

Figure 1.1: The Voronoi cell V? is formed

by the intersection of all the half-planes

between ? and the other points.

Figure 1.2: The VD for a set ( of points in

the plane (the black points).
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The Delaunay triangulation (DT) and the Voronoi diagram (VD) are

fundamental data structures when dealing with spatial datasets, many

computer scientists and mathematicians consider the VD as being the

most fundamental spatial structure (or spatial model) because it is very

simple, and yet is so powerful that it helps in solving many theoretical

problems, as well as many real-world applications.

The DT and the VD are most often presented, described, and used, in two

dimensions, but their concepts can be generalised to higher dimensions.

We describe in this chapter the concepts in ℝ3
, and also discuss the

=-dimensional cases when appropriate.

We also discuss how the constrained and conforming DT can be gener-

alised to ℝ3
.

W To read or to watch.

The reader is advised to first read the Chapter Triangulations & Voronoi
diagram in the book Computational modelling of terrains (Ledoux et al.,

2020), where the 2D concepts are introduced.

1.1 The three-dimensional Voronoi Diagram

Let ( be a set of points in ℝ3
. The Voronoi cell of a point ? ∈ (, defined

V? , is the set of points G ∈ ℝ3
that are closer to ? than to any other point

in (; that is:

V? = {G ∈ ℝ3 | ‖G − ?‖ ≤ ‖G − @‖ , ∀ @ ∈ (} (1.1)

The union of the Voronoi cells of all generating points ? ∈ ( form the

Voronoi diagram of (, defined VD((). If ( contains only two points ?

and @, then VD(() is formed by a single hyperplane defined by all the

points G ∈ ℝ3
that are equidistant from ? and @. This hyperplane is

the perpendicular bisector of the line segment from ? to @, and splits

the space into two (open) half-spaces. V? is formed by the half-space

containing ?, and V@ by the one containing @.

As shown in Figure 1.1, when ( contains more than two points (let us say

it contains = points), the Voronoi cell of a given point ? ∈ ( is obtained

by the intersection of = − 1 half-spaces defined by ? and the other points

@ ∈ (. That means that V? is always convex, in any dimensions. Notice

also that every point G ∈ ℝ3
has at least one nearest point in (, which

means that VD(() covers the entire space.

As shown in Figures 1.2, the VD of a set ( of points in ℝ2
is a planar

graph, but it can also be seen as a two-dimensional cell complex where

each 2-cell is a (convex) polygon. Two Voronoi cells, V? and V@ , lie on the

cba Ken Arroyo Ohori, Hugo Ledoux and Ravi Peters. This work is licensed under a Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/)
(last update: February 11, 2021)

http://creativecommons.org/licenses/by/4.0/
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Figure 1.3: Two Voronoi cells adjacent to

each other in ℝ3
, they share the grey face.

Figure 1.4: The Voronoi cell for the red

vertex, the red edges are the Delaunay

edges that are dual to the Voronoi facets.

Figure 1.5: The DT of a set of points in the

plane.

Figure 1.6: A Delaunay tetrahedron has

an empty circumsphere.

opposite sides of the perpendicular bisector separating the points ? and

@.

In ℝ3
, VD(() is a three-dimensional cell complex. The Voronoi cell of

a point ? is formed by the intersection of all the half-spaces (three-

dimensional planes) between ? and the other points in (. Drawing a

picture of the three-dimensional case is not easy, thus Figure 1.3 shows

two adjacent Voronoi cells (which are convex polyhedra), and Figure 1.4

one cell with its incident Delaunay edges.

The VD has many properties, and most of them are valid in any dimen-

sions. Note that most of these properties are valid only when the set ( of

points is in general position, that is when for example in three dimensions

no five points are cospherical, and no four points are collinear. Details

concerning the possible degeneracies are given in Section 1.2.6. What

follows is a list of the most relevant properties:

Size: if ( has = points, then VD(() has exactly = Voronoi cells since there

is a one-to-one mapping between the points and the cells.

Voronoi vertices: in ℝ3
, a Voronoi vertex is equidistant from (3 + 1)

points. In ℝ3
, a Voronoi vertex is at the centre of a sphere defined

by 4 points in (.

Voronoi edges: in ℝ3
, a Voronoi edge is equidistant from 3 points.

Voronoi faces: in ℝ3
, a Voronoi face is equidistant from (3 − 1) points.

Hence, in ℝ3
, it is the bisector plane perpendicular to the line

segment joining two points.

Convex hull: let ( be a set of points in ℝ3
, and ? one of its points. V? is

unbounded if ? bounds conv((). Otherwise, V? is the convex hull

of its Voronoi vertices.

1.2 The Delaunay tetrahedralisation

The Delaunay triangulation of a set ( of points in ℝ3
is a simplicial

complex where each 3-simplex �, formed by 3 + 1 vertices in (, has

an empty circumball (a ball is said to be empty when no points are in

its interior). For ℝ3
, it is called the Delaunay tetrahedralisation: the

space is tessellation into non-overlapping tetrahedra having an empty

circumsphere (as shown in Figure 1.6).

1.2.1 Duality between the DT and the VD

The VD and the DT are dual to each other, and that in any dimensions.

This means they represent the same thing but from a different point-of-

view, and one structure can always be extracted from the other. Consider

a graph embedded inℝ3
as a 3-dimensional cell complex. The mappings

between the elements of a cell complex in ℝ3
are as follows: let � be a

:-cell, the dual cell of � in ℝ3
is denoted by �★

and is a (3 − :)-cell.

The duality between the VD and the DT in ℝ3
are thus as follows:

I a Delaunay vertex ? becomes a Voronoi cell (Figure 1.7a);

I a Delaunay edge 
 becomes a Voronoi face (Figure 1.7b);

I a Delaunay triangular face � becomes a Voronoi edge (Figure 1.7c);

I a Delaunay tetrahedron � becomes a Voronoi vertex (Figure 1.7d).
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(a) (b) (c) (d)

p
κ

α τ
Figure 1.7: Duality in ℝ3

between the ele-

ments of the VD and the DT.

(a) (b) (c)

Figure 1.8: (a) A set of 1000 points randomly distributed in a cube. (b) Its convex hull. (c) The Delaunay tetrahedralisation of the points,

‘sliced’ in the middle and the upper tetrahedra removed (to be able to visualise the interior).

facet

locally Delaunay

AVoronoi vertex is located at the centre of the sphere circumscribed to its

dual tetrahedron, and two vertices in ( have a Delaunay edge connecting

them if and only if their two respective dual Voronoi cells are adjacent.

1.2.2 Convex Hull

In any dimensions, the DT of set ( of points subdivides completely

conv((), ie the union of all the simplices inDT(() is conv((). The boundary

of a convex hull in 3D is formed of a set of triangles. Figure 1.8b shows

an example.

1.2.3 Local Optimality

Let Tbe a triangulation of ( in ℝ3
. A facet � (a (3 − 1)-simplex) is said

to be locally Delaunay if it either:

(i) belongs to only one 3-simplex, and thus bounds conv((), or

(ii) belongs to two 3-simplices �0 and �1 , formed by the vertices of � and

respectively the vertices 0 and 1, and 1 is outside of the circumball

of �0 .

The second case is illustrated in two dimensions in Figure 1.9a. In an arbi-

trary triangulation, not every facet that is locally Delaunay is necessarily

a facet of DT((), but local optimality implies globally optimality in the

case of the DT:

Let Tbe a triangulation of a point set ( inℝ3
. If every facet of

T is locally Delaunay, then T is the Delaunay triangulation

of (.
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Figure 1.9: (a) A four-sided convex poly-

gon 0123 can be triangulated in two dif-

ferent ways, but the empty circumcircle

criterion guarantees that the triangles are

as equilateral as possible. Notice that the

edge 02 is not locally Delaunay, but 13 is.
(b) In threedimensions, five vertices canbe

triangulated with either two or three tetra-

hedra. Although the tetrahedralisation at

the bottom has two nicely shaped tetrahe-

dra, they are not Delaunay (the point 3
is inside the sphere 0124, which also im-

plies that 1 is inside the sphere 0234). The
tetrahedralisation at the top respects the

Delaunay criterion, but contains one very

thin tetrahedron spanned by the points 0,
1, 3 and 4. (a) (b)

a

b

c

d
ea

b

c

d

max-min angle optimality

slivers

This has serious implications as the DT—and its dual—are locally modi-

fiable, ie we can theoretically insert, delete or move a points in ( without

recomputing DT(() from scratch.

1.2.4 Angle Optimality

The DT in two dimensions has a very important property that is useful in

applications such as finite element meshing or interpolation: themax-min
angle optimality. Among all the possible triangulations of a set ( of points

in ℝ2
, DT(() maximises the minimum angle (max-min property), and

also minimises the maximum circumradii. In other words, it creates

triangles that are as equilateral as possible.

Finding ‘good’ tetrahedra, ie nicely shaped, is however more difficult

than finding good triangles because the max-min property of Delaunay

triangles does not generalise to three dimensions. A DT inℝ3
can indeed

contain some tetrahedra, called slivers, whose four vertices are almost

coplanar (see Figure 1.9b); these tetrahedra are Delaunay. Note that such

slivers do not have two-dimensional counterparts.

For many applications where the Delaunay tetrahedralisation is used,

eg in the finite element method in engineering or when the tetrahedra

are used to perform interpolation directly, these tetrahedra are bad and

must be removed. Why use the DT in three dimensions then? First, it

should be said that in most cases Delaunay tetrahedra have in general

a more desirable shape than arbitrary tetrahedra, they tend to favour

‘round’ tetrahedra. Second, the VD is not affected by them: Voronoi cells

in three dimensions will still be ‘relatively spherical’ even if the DT has

many slivers. Third, if the VD is used for interpolation, then the VD is

necessary because many GIS operations use the properties of the VD

(see Section 1.4.2), and if only one tetrahedron does not have an empty

circumsphere, then the VD is corrupted.

1.2.5 Lifting on the paraboloid

There exists a close relationship between DTs inℝ3
and convex polytopes

in ℝ3+1
.
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S

S+

parabolic
lifting

Figure 1.10: The parabolic lifting map for

a set ( of points ℝ2
.

Let ( be a set of points in ℝ3
, and let G1 , G2 , . . . , G3 be the coordinates

axes. The parabolic lifting map projects each vertex E(EG1 , EG2 , . . . , EG3)
to a vertex E+(EG1 , EG2 , . . . , EG3 , E

2

G1
+E2

G2
+ · · · +E2

G3
) on the paraboloid of

revolution inℝ3+1
. The set of points thus obtained is denoted (+. Observe

that, for the two-dimensional case, the paraboloid in three dimensions

defines a surface whose vertical cross sections are parabolas, and whose

horizontal cross sections are circles; the same ideas are valid in higher

dimensions.

The relationship is the following: every facet (a 3-dimensional simplex)

of the lower envelope of conv((+) projects to a 3-simplex of the Delaunay

triangulation of (. This is illustrated in Figure 1.10 for the construction of

the DT in ℝ2
.

In short, the construction of the 3-dimensional DT can be transformed

into the construction of the convex hull of the lifted set of points in

(3 + 1) dimensions. In practice, since it is easier to construct convex hulls

(especially in higher dimensions, ie 4+), the DT is often constructed with

this method.

1.2.6 Degeneracies

The previous definitions of the VD and the DT assumed that the set (

of points is in general position, ie the distribution of points does not

create any ambiguity in the two structures. For the VD/DT in ℝ3
, the

degeneracies, or special cases, occur when 3 + 1 points lie on the same

hyperplane and/or when 3 + 2 points lie on the same ball. For example,

in three dimensions, when five or more points in ( are cospherical there

is an ambiguity in the definition of DT((). This implies that DT(() is not

unique; VD(() is still unique, but it has different properties.

1.3 Construction of the 3D DT/VD

As is the case in 2D, there exist several algorithms to construct either the

DT or the VD from a set of points in 3D.

Mainly three paradigms of computational geometry can be used for

computing a Delaunay triangulation in two and three dimensions: divide-

and-conquer, sweep plane, and incremental insertion. In two dimensions,

each one of these paradigms yields an optimal algorithm. In three

dimensions, things are a bit more complicated. Divide-and-conquer

algorithms have a worst time complexity of O(=3), although in practice

they are subquadratic. Only incremental insertion algorithms have a

complexity that is worst-case optimal, ie O(=2) since the complexity of

the DT in ℝ3
is quadratic. That is, there are configurations of = points

that yield a DT with O(=2) tetrahedra.

And as is the case in 2D, it is often simpler to reconstruct and store the

DT (because they have only 4 vertices and 4 neighbours) and to extract

the VD on-the-fly when needed.

The details of the algorithms are out of scope for this course. We provide

in the following a general idea of how the reconstruction of the DT is

performed in 3D by generalising the algorithm described in GEO1015.
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Algorithm 1: Algorithm to insert one point in a DT

1 Input: A DT(() T in ℝ3
, and a new point ? to insert

Output: T? = T∪ {?}
2 find tetrahedron � containing ?
3 insert ? in � by splitting it in to 4 new tetrahedra (flip14)

4 push 4 new tetrahedra on a stack

5 while stack is non-empty do
6 � = {?, 0, 1, 2} ← pop from stack

7 �0 = {0, 1, 2, 3} ← get adjacent tetrahedron of � having the edge

012 as a face

8 if 3 is inside circumsphere of � then
9 if configuration of � and �0 allows it then
10 flip the tetrahedra � and �0 (flip23 or flip32)

11 push 2 or 3 new tetrahedra on stack

12 else
13 Do nothing

Figure 1.11: Step-by-step insertion, with flips, of a single point in a DT in two dimensions.

flips

2 How does it work in practice?

Even more than in 2D, the duality between the convex hull in 3 + 1-

dimension and the DT in 3-dimension is in practice exploited. Indeed,

one can construct the convex hull of a set of points projected to 4D to

obtain the DT in 3D. One popular and widely used implementation

is Qhull (http://www.qhull.org/).

1.3.1 Generalisation of the flip-based incremental
insertion algorithm

The algorithm described in Algorithm 1 is a generalisation to 3D of the

flip-based incremental insertion algorithm used for 2D DT.

Most steps can be generalised in a direct way. Figure 1.11 shows the steps

from the 2D algorithm, which are conceptually the same for the 3D

generalisation of the algorithm (and it is more difficult to draw these

steps in 3D).

As is the case with the two-dimensional algorithm, the point ? is first

inserted in Twith a flip (flip14 in the case here), and the new tetrahedra

created must be tested to make sure they are Delaunay. The sequence of

flips needed is controlled by a stack containing all the tetrahedra that have

not been tested yet. The stack starts with the four resulting tetrahedra of

the flip14, and each time a flip is performed, the new tetrahedra created

http://www.qhull.org/


1.3 Construction of 3D DT/VD 7

(a)

a

b
c

d

flip14

flip41

a

b
c

d

e

(b)

flip23

flip32

a

b
c

d

e

Figure 1.12: The 4 different kinds of flips

in 3D.

are added to the stack. The algorithms stops when all the tetrahedra

incident to ? are Delaunay, which also means that the stack is empty.

Initialisation: the big tetrahedron. A DT is initialised with a tetrahe-

dron several times larger than the spatial extent of (. The points in ( are

therefore always added inside an existing tetrahedron.

Walk/Point location. To find the tetrahedron containing the newly

inserted point ?, the adjacency relationships between the tetrahedra

can be used. With a series of Orient tests one can navigate from one

tetrahedron to the other.

Flips. A flip is a local (topological) operation that modifies the config-

uration of some adjacent tetrahedra. In 2D, for 4 points, a flip (called

flip22), modifies the configuration of 2 adjacent triangles by flipping the

diagonal of the quadrilateral. In 3D, there are 2 kinds of flips: flip23 and
flip32. Consider the set ( = {0, 1, 2, 3, 4} of points in general position in

ℝ3
and its convex hull conv((). There exist two possible configurations,

as shown in Figure 1.12:

1. the five points of ( lie on the boundary of conv((); see Figure 1.12a.

There are exactly two ways to tetrahedralise such a polyhedron:

either with two or three tetrahedra. In the first case, the two

tetrahedra share a triangular face 123, and in the latter case the

three tetrahedra all have a common edge 04.

2. one point 4 of ( does not lie on the boundary of conv((), thus

conv(() forms a tetrahedron; see Figure 1.12b. The only way to

tetrahedralise ( is with four tetrahedra all incident to 4.

Based on these two configurations, four types of flips in ℝ3
can be

described: flip23, flip32, flip14 and flip41 (the numbers refer to the number

of tetrahedra before and after the flip).When ( is in the first configuration,

two types of flips are possible: a flip23 is the operation that transforms

one tetrahedralisation of two tetrahedra into another one with three

tetrahedra; and a flip32 is the inverse operation. If ( is tetrahedralisedwith

two tetrahedra and the triangular face 123 is not locally Delaunay, then a

flip23will create three tetrahedra whose faces are locally Delaunay.

A flip14 refers to the operation of inserting a vertex inside a tetrahedron,

and splitting it into four tetrahedra; and a flip41 is the inverse operation
that deletes a vertex.

Flips can not always be applied during an insertion, it depends on the

local configuration. For example, in Figure 1.12a, a flip23 is possible on the

two adjacent tetrahedra 0123 and 1234 if and only if the line 04 passes

through the triangular face 123 (which also means that the union of 0123

and 1234 is a convex polyhedron). If not, then a flip32 is possible if and

only if there exists in the tetrahedralisation a third tetrahedron adjacent

to both 0123 and 1234.
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a
b

c

d

σa = bdc

Figure 1.13: The tetrahedron 0123 is cor-

rectly oriented since Orient (0, 1, 2, 3) re-
turns a positive result. The arrow indicates

the correct orientation for the face �0 , so
that Orient (�0 , 0) returns a positive re-

sult.

1.3.2 Predicates

The ‘orientation’ of points in three dimensions is somewhat tricky because,

unlike in twodimensions,we can not simply rely on the counter-clockwise

orientation. In three dimensions, the orientation is always relative to

another point of reference, ie given three points we cannot say if a fourth

one is left of right, this depends on the orientation of the three points.

When dealing with a single tetrahedron � formed by the four vertices

0, 1, 2 and 3 (as in Figure 1.13), we say that � is correctly oriented if

Orient (0, 1, 2, 3) returns a positive value. Notice that if two vertices are

swapped in the order, then the result is the opposite (ie Orient (0, 2, 1, 3)

returns a negative value).

Vertices forming a face in a tetrahedron � can also be ordered. As shown

in Figure 1.13, a face �0 , formed by the vertices 1, 2 and 3, is correctly

oriented if Orient (�0 , 0) gives a positive result—in the case here, Orient

(1, 2, 3, 0) gives a negative result, therefore the correct orientation of �0
is 213. Observe that the face 123 is called �0 because it is ‘mapped’ to

the vertex 0 that is opposite; each of the four faces of a tetrahedron can

be referred to in this way.

Orient determines if a point ? is over, under or lies on a plane defined

by three points 0, 1 and 2. It returns a positive value when the point ? is

above the plane defined by 0, 1 and 2; a negative value if ? is under the

plane; and exactly 0 if ? is directly on the plane. Orient is consistent with

the left-hand rule: when the ordering of 0, 1 and 2 follows the direction

of rotation of the curled fingers of the left hand, then the thumb points

towards the positive side (the above side of the plane). In other words, if

the three points defining a plane are viewed clockwise from a viewpoint,

then this viewpoint defines the positive side the plane.

Orient can be implemented as the determinant of a matrix:

Orient(0, 1, 2, ?) =

��������
0G 0H 0I 1

1G 1H 1I 1

2G 2H 2I 1

?G ?H ?I 1

�������� (1.2)

The predicate InSphere follows the same idea: a positive value is returned

if ? is inside the sphere; a negative if ? is outside; and exactly 0 if ? is

directly on the sphere. Observe that to obtain these results, the points

0, 1, 2 and 3 in InSphere must be ordered such that Orient (0, 1, 2, 3)

returns a positive value.

It should be noticed that InSphere is derived from the parabolic lifting

map (see Section 1.2.5). It is simply transformed into a four-dimensional

Orient test: ? is inside (outside) the sphere 0123 if and only if ?+ lies

under (above) the hyperplane 0+1+2+3+, and directly on the sphere if

?+ lies on the hyperplane 0+1+2+3+.

InSphere(0, 1, 2, 3, ?) =

����������
0G 0H 0I 02

G + 02

H + 02

I 1

1G 1H 1I 12

G + 12

H + 12

I 1

2G 2H 2I 22

G + 22

H + 22

I 1

3G 3H 3I 32

G + 32

H + 32

I 1

?G ?H ?I ?2

G + ?2

H + ?2

I 1

���������� (1.3)
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1.3.3 Data structure

Instead of storing triangles as the atom, tetrahedra are used, they have 4

pointers to their 4 vertices, and 4 pointers to their 4 adjacent tetrahedra.

All of them must be oriented correctly (as is the case in 2D where they

are all counter-clockwise), as defined above.

1.3.4 Extracting the VD from the DT

Let Tbe the DT of a set ( of points in ℝ3
. The simplices of the dual D of

Tcan be computed as follows (all the examples refer to Figure 1.7):

I Vertex: a single Voronoi vertex is easily extracted—it is located at

the centre of the sphere passing through the four vertices of its

dual tetrahedron �.
I Edge: a Voronoi edge, which is dual to a triangular face �, is formed

by the two Voronoi vertices dual to the two tetrahedra sharing �.
I Face: a Voronoi face, which is dual to a Delaunay edge 
, is formed

by all the vertices that are dual to the Delaunay tetrahedra incident

to 
. The idea is simply to ‘turn’ around a Delaunay edge and

extract all the Voronoi vertices. These are guaranteed to be coplanar,

and the face is guaranteed to be convex.

I Polyhedron: the construction of one Voronoi cell V? , dual to a

vertex ?, is similar: it is formed by all the Voronoi vertices dual

to the tetrahedra incident to ?. Since a Voronoi cell is convex by

definition, it is possible to collect all the Voronoi vertices and then

compute the convex hull; the retrieval of all the tetrahedra incident

to ? can be done by performing a breadth-first search-like algorithm

on the graph dual to the tetrahedra. A simpler method consists of

first identifying all the edges incident to ?, and then extracting the

dual face of each edge.

Given T, we must obviously visit all its 3-simplices to be able to extract

D. This means that computing D from Thas a complexity of Θ(=)when

( contains = points.

1.4 Applications of the DT and the VD

1.4.1 Modelling continuous 3D fields (as an alternative to
voxels)

The objects studied in geoscience are often not man-made objects, but

rather the spatial distribution of three-dimensional continuous geograph-

ical phenomena such as the salinity of a body of water, the humidity

of the air, or the percentage of gold in the rock. These are referred to

as fields, and raster structures (voxels or octrees) are the most popular

solutions for modelling them. However, using regular structures has

shortcomings and therefore the VD is a viable alternative.

One advantage is that the VDwill adapt to the anisotropic distribution of

the samples collected to study afield, these samples are three-dimensional

points (G, H, I) to which an attribute is attached (eg the percentage of a
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(a)

800km

(b)

Figure 1.14: (a) Example of a dataset in geology, where samples were collected by drilling a hole in the ground. Each sample has a location

in 3D space (G − H − I coordinates) and one or more attributes attached to it. (b) An oceanographic dataset in the Bering Sea in which

samples are distributed along water columns. Each red point represents a (vertical) water column, where samples are collected every 2m,

but water columns are about 35km from each other.

certain mineral in a body of water). In practice, the samples can be very

hard and expensive to collect because of the difficulties encountered and

the technologies involved. To collect samples in the ground we must

dig holes or use other devices (eg ultrasound penetrating the ground);

underwater samples are collected by instruments moved vertically un-

der a boat, or by automated vehicles; and samples of the atmosphere

must be collected by devices attached to balloons or aircraft. As shown

in Figure1.14, samples are often abundant vertically but very sparse

horizontally.

Another advantage is that the VD can be efficiently and robustly recon-

structed, and that based on it the samples can be interpolated to obtain

an estimation of the attribute at any location, see below for details.

Finally, the tessellations of the VD (and the DT) make possible, and even

optimise, several spatial analysis and visualisation operations.

1.4.2 Spatial interpolation

Given a set of samples, embedded in three-dimension, to which an

attribute 0 is attached, spatial interpolation permits us to reconstruct the

field that was sampled.

As is the case in 2D, the properties of both the 3DVD and the 3DDT can

be used to estimate the value of an attribute.

Chapter 12 presents in details how to extend to three dimensions the

usual interpolation methods used in GIS, and discusses whether they

preserve their properties or are appropriate for geoscientific datasets.

1.4.3 Iso-surfaces

Given a set of samples from a trivariate field 5 (G, H, I) = 0, an isosurface

is the set of points in space where 5 (G, H, I) = 00, where 00 is a constant.

Isosurfaces, also called level sets, are the three-dimensional analogous
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(a) (b) (c)

Figure 1.15: An example of an oceanographic dataset where each point has the temperature of the water, and three isosurface extracted (for

a value of respectively 2.0, 2.5 and 3.5) from this dataset.

Figure 1.16: A PLC representing a solid

(with a genus of 1) and having one dan-

gling left; notice also that one extra edge is

on a polygon. Right: These two polygons

do not form a valid PLC because their in-

tersection is not formed of vertices and

edges in the PLC.

Figure 1.17: These two polygons do not

formavalidPLCbecause their intersection

is not formed of vertices and edges in the

PLC.

concept to isolines (also called contour lines), which have been tradi-

tionally used to represent the elevation in topographic maps. Figure 1.15

shows one concrete example.

As explained in Chapter 12, isosurfaces can be extracted automatically

from the DT.

1.5 Constrained tetrahedralisations

As is the case in 2D, given as input a set of points, straight-line segments,

and faces embedded in ℝ3
, two different Delaunay tetrahedralisations

are possible:

I conforming Delaunay tetrahedralisation (ConfDT)

I constrained Delaunay tetrahedralisation (ConsDT)

Both tetrahedralisations covers the convex hull of P, respect every

polygon (which can be represented by one ormore triangles), and include

every segment (which can be one of more edges in the tetrahedralisation)

and vertex.

The typical input of a Delaunay tetrahedralisation program (or algorithm)

is a called piecewise linear complex (PLC). A PLC P is a set of linear 3-cells

(where 0 ≤ 3 ≤ 3), that satisfy the following properties:

1. the boundary of a 3-cell in P is a union of cells in P

2. if two distinct cell 5 , 6 ∈ P intersect, their intersection is a union

of cells in P.

Figure 1.16 shows one example. As shown in Figure 1.17, in practice

this means that polygons cannot intersect other polygons (there needs

to be a vertex and/or edges), but there are otherwise no restriction on

the shapes that can be represented. Observe also that a PLC is flexible

and allows unconnected (ie ‘floating’) vertices, edges, and faces (an edge

can for instance be inside a polygon). Dangling edges, such as the one in

Figure 1.16, are also allowed. The domain represented by a PLC does not

have to represent a volume, it can be simply a set of points and surfaces

that act as constraints for the tetrahedralisation.
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Figure 1.18: The Schönhardt polyhedron
is impossible to tetrahedralise without

adding extra vertices inside.

Steiner points

Tetrahedralisation of a polyhedron. While any polygon in two dimen-

sions can be triangulated, some arbitrary polyhedra cannot be tetra-

hedralised without the addition of extra vertices, the so-called Steiner

points. Figure 1.18 shows a simple example, called the Schönhardt

polyhedron after the mathematician who first described the case. This

polyhedron is formed by twisting the top face of a triangular prism to

form a 6-vertex polyhedron having eight triangular faces (each one of

the three quadrilateral faces adjacent to the top face will fold into two

triangles). It is impossible to select four vertices of the polyhedron such

that a tetrahedron is totally contained inside the polyhedron, as none of

the vertices of the bottom face can directly ‘see’ the three vertices of the

top triangular face.

Conforming DT (ConfDT). A ConfDT is a tetrahedralisation where

every tetrahedron has an empty circumsphere, it is thus a ‘real’ Delaunay

tetrahedralisation. This is achieved by adding new extra points to the

input PLC P to ensure that the input constraints are present in the

ConfDT. The extra points are called, as is the case in 2D, Steiner points.

It is known that every =-vertex PLC has a Steiner tetrahedralisation

with at most O(=2) vertices; notice here that this tetrahedralisation is not
necessarily Delaunay.

Obtaining a ConfDT might require inserting significantly more than this,

when for instance two or more polygons form a very small angle.

In fact, there do not exist any algorithm that guarantees to insert a

polynomial number of vertices.

Most implementations will insert several new vertices, which are often

unnecessary. Because of this, ConfDT are less used in practice.

Constrained DT (ConsDT). Given a PLC P, the ConsDT is similar

to the Delaunay tetrahedralisation, but the tetrahedra in ConsDT are

not necessarily Delaunay (ie their circumsphere might contain other

points from P). The empty circumsphere for a ConsDT is less strict: a

tetrahedron is Delaunay if its circumsphere contains no other points in

P that are visible from the tetrahedron; the constraints polygons in P act

a visibility blockers.

Thus, the ConsDT aims at keeping the Delaunay properties, but relaxes

them to be able to respect the constraints (edges and polygons in the

PLC).

However, unlike in 2D where it is known that for a set ( of points and

straight-line segments there is always a ConsDT possible, in 3D this is

not the case. As explained above, this is linking to the fact that simple

PLC cannot be tetrahedralised at all. As a consequence, the ConsDT of

a PLC in 3D allows extra Steiner vertices to be inserted. The existing

algorithms (and their implementations) that will insert far fewer vertices

in a ConsDT than in a ConfDT. The details of the algorithms are beyond

what is covered in this course.
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Figure 1.19: The LoD1 3D model of the TU Delft where each building is represented with the ConsDT of its PLC.

2 How does it work in practice?

Implementing a ConsDT that is robust against all input is difficult,

and there exists few reliable libraries. Perhaps the “best” and easiest

to use is TetGen, which is open-source; it is available at http://www.

tetgen.org/. Beware: it expects a perfect input PLC, which is often

not available for 3D geographical datasets that are made available by

municipalities and governments; see Lesson 5.2.

1.6 Notes and comments

Rajan (1991) shows that the smallest sphere containing a Delaunay

tetrahedron is smaller than the one of any other tetrahedron, ie the

Delaunay criterion favours ‘round’ tetrahedra.

Cignoni et al. (1998) developed an algorithm, called DeWall and based

on the divide-and-conquer paradigm, for constructing the DT in any di-

mensions. Although the worst-time complexity of this algorithm is O(=3)
in three dimensions, they affirm that the speed of their implementation

is comparable to the implementation of known incremental algorithms,

and is sub-quadratic.

The Schönhardt polyhedron was first described in Schönhardt (1928).

The algorithm to construct the 3D DT is adapted from Joe, 1991, and

is conceptually the same as Edelsbrunner and Shah, 1996. See Ledoux

(2007) for an easy explanation of the steps to construct the 3D DT/VD

for a set of points, including the handling of the degeneracies.

http://www.tetgen.org/
http://www.tetgen.org/


14 1 Tetrahedralisations and 3D Voronoi diagrams

Ledoux and Gold (2008) presents an overview of why the VD is a better

alternatives to grids for the modelling of geoscientific fields.

1.7 Exercises
1. A DT contains 32 tetrahedra and we insert a new point ? that

falls inside one of the tetrahedra. If we insert and update the

tetrahedralisation (for the Delaunay criterion), what is the number

of tetrahedra?

2. If a given vertex E in a DT has 18 incident tetrahedra, how many

vertices will its dual Voronoi cell contain?

3. Take a cube and try tetrahedralise it (not necessarily into Delaunay

tetrahedra). How many tetrahedra do you get?

4. If 0 = (1, 1, 2), 1 = (4, 2, 2), 2 = (3, 3, 2), and 3 = (4, 3, 3). Is the
value returned by Orient (0, 1, 2, 3) positive, negative, or 0?
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