
exhaustive enumeration

Voxels and voxelisation Lesson 2.1

1.1 Exhaustive enumeration mod-
els . 1
1.2 Hierarchical subdivision mod-
els . 3
1.3 Voxelisation 4
1.4 Exercises 9
1.5 Notes and comments 9

Voxel models, which are the 3D equivalent of 2D rasters, are a common
way to store 3D models of the built environment using a regular 3D grid
(Figure 1.1). Much like rasters in 2D, they have inherent limits in precision
based on the grid size that is used and can easily grow to very large
sizes in terms of memory, especially with a small grid size and when
compression is not used.

At the same time, voxel models are easy to use and understand, and
algorithms to process them are typically much simpler than those using
other representations, which also makes them more reliable, robust and
easy to parallelise. These characteristics make voxels an important and
widely used representation to process 3D information in general.

(a)

(b)

Figure 1.1: (a) A mesh model of a house
with surrounding terrain and trees and
(b) a corresponding voxel model with the
same elements.

1.1 Exhaustive enumeration models

Voxels might appear to be quite a unique data model in terms of 3D
representations, but they are actually only the most used among a type
of related representations, which are together usually referred to as
exhaustive enumeration. The specifics of these data models differ, but in

cba Ken Arroyo Ohori, Hugo Ledoux and Ravi Peters. This work is licensed under a Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/)
(last update: February 9, 2021)

http://creativecommons.org/licenses/by/4.0/

2 1 Voxels and voxelisation

voxel domain

voxel cells

general they represent objects by:

1. defining the shape of a domain in which the objects to be repre-
sented fit, or alternatively in which the region of interest of a field
fits, eg a bounding box defined by their minimum and maximum
coordinates along each axis;

2. dividing the domain using a structure of many cells, usually fol-
lowing a regular or semi-regular pattern that can be defined pro-
grammatically (as opposed to explicitly representing the shape of
each individual cell), eg a grid defined by the number of cells along
each axis;

3. specifying a well-defined order passing once through each cell
of the subdivision, usually also programmatically (as opposed
to explicitly numbering each cell), eg the order and direction of
iteration of the axes in a grid;

4. labelling each cellwith values that indicate the object(s) that are
in it, or in the case of fields, the values of variable(s) at that location.
The values can then be encoded linearly using the order defined in
the previous step.

We can thus say that what is represented in an exhaustive enumeration
is usually composed of four elements: (i) a set of rules defining the shape
of a domain, (ii) a set of rules on how to divide the domain into cells, (iii)
a set of rules that define an order of the cells, and (iv) an encoded linear
representation that represents objects or values for all cells. However, out
of these four elements, the first three are sets of rules that are generally
very simple, and thus they are stored encoded in a minimal way or not
at all (ie only implied by the context). For instance, the rules might be
part of the specification of a particular data format.

Based on these standard characteristics, we can see that exhaustive
enumeration representationsuse spacedifferently fromother datamodels.
In most geometric representations, much (or most) of the space and
complexity of a data structure is devoted to creating a custom structure
that individually describes the shape of the objects being represented.
By contrast, in exhaustive enumeration, objects’ shapes are instead
approximated using simple rules on a predefined structure, and the vast
majority of the space is thus devoted to specifying which objects are
present in which cells (or the values of a field in each cell).

That being said, the statements described above—which in the steps
correspond to the actions that are done for a standard regular 3Dgridwith
voxels—can all differ substantially. By analysing different possibilities
at each step, it is easy to see how the approach can be adapted and
extended to form other types of representations. For instance, consider
the following example, which is arbitrarily chosen to be completely
different from a typical voxel grid.

We can start by describing a space using an alternative method, eg a b-rep
representation of a domainwith an arbitrarily complex shape. Cells could
then be specified using a constrained Delaunay tetrahedralisation of the
domain (using predefined rules for the addition of Steiner points). The
order of the cells could be specified based on the lexicographical order
of the vertices of each tetrahedron. Finally, the values of each tetrahedral
cell are then encoded linearly as in a grid.

1.2 Hierarchical subdivision models 3

sparse voxel model

While the previous example is perfectly possible, it is worth noting
that exhaustive enumeration schemes are well-liked largely because of
their simplicity, which means that simpler representations are usually
preferred. Using a complex representation where the geometry is not
trivial to compute on the fly (eg a CDT) thus defeats many of the
advantages of the exhaustive enumeration approach.

Most examples that are found in practice are thus relatively minor
variations of voxel grids. For instance, cells can have varying sizes
according to their place in the grid (eg when more details are desired
in a particular region), the domains of grids can be stretched in some
directions (such that the domain is oblique), or the cells can be of different
shapes (eg octahedra).

Among the variations of voxel models, sparse voxel models are used
widely in practice and are thus worth describing in more detail here.
These representations opt to encode only the voxels containing something
(rather than all voxels in the domain). In order to do so, they usually
specify simple objects consisting of: (i) a voxel position, eg using integer
coordinates for its position along each axis, and (ii) the voxel’s variables.
While this is undoubtedly more space-intensive per voxel than the
standard encode-all approach, it works well for 3D models consist of
largely empty space, which occurs frequently in 3D city models and
where the objects we want to represent do not fit neatly into a box-shaped
domain.

It is also worth pointing out that most variations of voxel models can be
processed with basically the same methods as standard voxel grids.

1.2 Hierarchical subdivision models

In addition to exhaustive enumeration, there are also related data models
where the structure is not entirely predefined, but it is instead defined
hierarchically using space-partitioning trees. The root of the tree thus
refers to a predefined space that will be subdivided, which corresponds
to the entirety of the domain that is represented in an exhaustive enumer-
ation model. Each node then specifies a subset of the space defined by
its parent node, and nodes (usually but not necessarily at the leaf level)
are then labelled to specify the object(s) or value(s) present in the space
represented by it.

Since different branches of a tree do not need to have the same depth,
hierarchical subdivisionmodels can have different resolutions in different
parts of the model, and can thus adapt to the shape of the objects being
represented. This allows them to act as more compact alternatives to
exhaustive enumeration models in certain cases, usually where there are
large objects that occupy many adjoining cells. Note however that the
tree structure of a hierarchical representation can occupy a significant
amount of space.

Hierarchical subdivisions are also a good way to encode the sparse
models described in the previous section, where large areas of empty
space will be efficiently represented by leaf nodes that are generally close
to the root of the tree.

4 1 Voxels and voxelisation

voxelisation

6-connectivity

18-connectivity

26-connectivity

The most common structures used by hierarchical subdivision models
are:

octrees subdivide space evenly along the G, H and I axes into eight
equal-size octants. They are analogous to quadtrees in 2D, which
subdivide space evenly along the G and H axes into four equal-size
quadrants.

bintrees are similar to octrees, but they subdivide space in halves along
only one axis per node, then switching to a different axis for the
next level of the tree, eg G, then H, then I, then G again, etc.

:-d trees are similar to bintrees, but they subdivide space using an arbi-
trary plane per node, which can be defined by a single coordinate
included in the node.

1.3 Voxelisation

The process through which other data models are converted into voxels is
called voxelisation. It is analogous to rasterisation in 2D. In most cases, the
data being voxelised consists of vector objects, either as a point cloud or
a b-rep mesh. We will thus explain a method to voxelise 0D, 1D, 2D and
3D vector objects. In principle, it can be applied to arbitrary curves and
surfaces, but in most instances they will be line segments (or polylines),
as well as triangular and polygonal meshes.

1.3.1 Connectivity

When rasterising a curve in 2D, different algorithms aim to obtain a
pixellated curve that is connected according to either 4-connectivity or
8-connectivity (Figure 1.2). These are as follows:

4-connectivity means that pixels are connected to their four horizontally
and vertically adjacent neighbours.

8-connectivity means that pixels are connected their four 4-connected
neighbours and to their four diagonally incident neighbours.

In 3D, the equivalent concepts are 6-connectivity, 18-connectivity and
26-connectivity. These are as follows:

6-connectivity thus means that voxels are connected to their six adjacent
neighbours (ie on their left, right, front, back, bottom and top).

18-connectivity means that voxels are connected to their six 6-connected
neighbours and to their twelve incident neighbours that touch
them diagonally along an edge (ie top left, top right, top front, top
back, bottom left, bottom right, bottom front, bottom back, front
left, front right, back left and back right).

Figure 1.2: Rasterising a line to achieve
4-connectivity (left) and 8-connectivity
(right). The algorithm uses line targets (or-
ange) that are intersected with the curve.

1.3 Voxelisation 5

intersection target

26-connectivity means that voxels are connected to their eighteen 18-
connected neighbours and to their eight incident neighbours that
touch them diagonally along a vertex (ie top front left, top front
right, top back left, top back right, bottom front left, bottom front
right, bottom back left and bottom back right).

An alternative way to think about these connectivities is that they are
defined based on the dimensionality of the common boundary of the
pixels or voxels. 6-connectivitymeans that twoneighbouring voxels have a
common 2D face. 18-connectivity means that they have at least a common
1D edge (which covers having a common 2D face). 26-connectivity means
that they have at least a common 0D vertex (which covers having a
common 1D edge or 2D face).

18-connectivity is an interesting concept that shows that there is a consis-
tent logic for every dimension, but it is not really used in practice. We
will thus not discuss it further.

1.3.2 Intersections with targets (2D)

In the example from Figure 1.2, the pixellated curve is obtained by
calculating intersections between the original 1D curve and a set of
intersection targets that are 1D line segments. For 4-connectivity, the
targets consist of the four line segments that bound every pixel. For 8-
connectivity, the targets are line segments that bisect the pixel horizontally
and vertically and their midpoints. The intersections with the targets
give us a set of points, and the pixels in which these points are tell us the
pixels that are part of the pixellated curve. When a point lies on an edge
between two pixels or a vertex between four pixels, we consider that all
of the pixels are part of the curve.

In order to understand the logic of the targets, it is important to consider
two aspects: (i) where the intersections will lie and (ii) whether they
will detect lines when they do not cross the midpoint of a pixel. For 4-
connectivity, the targets simply detect when a line exits the pixel through
the left, right, bottom or top edges on the boundary of the pixel. Since
all intersections will be between pixels, the 2 or 4 pixels incident to the
points will be part of the pixellated curve. For 8-connectivity, the targets
detect when they pass through the middle of the pixel either vertically
or horizontally, which happens in the interior of the pixel. Crucially, note
that they might do not detect when a line cuts through a corner of the
pixel without crossing its middle vertically or horizontally.

Having covered the rasterisation of a 1D curve, let us discuss the two
other cases: rasterising 0D points and 2D areas. Since vector points
are not connected, they do not need to be connected when rasterised
either. Since areas are always connected, they should also be connected
when rasterised. Connectivity is thus not an issue, which makes their
rasterisation simpler.

An important observation for this method is that we used 1D targets to
rasterise a 1D curve. In order to rasterise a set of 0D points, we would use
intersections with 2D targets, of which the optimal choice would consist
of the whole area of each 2D pixel. In order to rasterise a set of 2D areas,
we would use intersections with 0D targets, of which the obvious choice

6 1 Voxels and voxelisation

Figure 1.3: A point cloud (a) before and
(b) after voxelisation. AHN data from Rot-
terdam.

(a)

(b)

is the midpoint of a pixel (although others are possible). It is possible to
see a duality property here: in order to rasterise 8-dimensional objects,
we use (2 − 8)-dimensional targets.

1.3.3 Intersections with targets (3D)

At this point, we should point out that the method described in the
previous section is not the absolute fastest or the most common to
rasterise objects in 2D. However, it is a method with good performance
with a logic that works perfectly in 3D, which is the reason why we will
now explain how it works for voxelisation.

Let us start backwards, with the equivalent duality property for voxelisa-
tion, which states that we can use (3 − 8)-dimensional targets to voxelise
8-dimensional objects. Using this formula directly, we can discuss the
most obvious cases first: voxelising 0D points and 3D volumes, in which
connectivity also does not matter.

In order to voxelise 0D points (eg a point cloud), we can thus simply
use 3D targets that consist of the whole voxel (Figure 1.3). That is, we
can compute for each point which voxel it is in, or for each voxel the
points that are in it. This is a trivial operation using ranges of G, H and I

coordinates.

Similar to the previous case, in order to voxelise 3D volumes, we can
use a 0D target with the midpoint of the voxel. The exact form of this
operation depends on the input data. For instance, if we have tetrahedra

1.3 Voxelisation 7

(a)

(b)
Figure 1.4: A set of lines (a) before and (b)
after voxelisation. OpenStreetMap data
from Istanbul.

as input, it would be a point in tetrahedron operation, which could be
done using barycentric coordinates.

Now, let us discuss the more challenging cases: 1D and 2D objects. As
with 1D curves in rasterisation, connectivity is important for these, so we
will give targets that can be used in order to achieve 6-connectivity and
26-connectivity for each.

In order to voxelise 1D curves with 6-connectivity (Figure 1.4), we could
detect when these pass through the top, bottom, left, right, front or back
faces of the voxel using 2D targets (Figure 1.5a). For 26-connectivity, we
could detect when these pass through the middle of the voxel using three
bisecting faces (Figure 1.5b).

Now, in order to voxelise 2D surfaces (Figure 1.6) with 6-connectivity,
we can use 1D targets that detect when we pass through any of the 12
edges on the boundary of the voxel (Figure 1.7a). For 26-connectivity, we
can use 1D targets that detect when we pass through the middle of the
voxel (Figure 1.7b).

8 1 Voxels and voxelisation

Figure 1.5: Intersection targets (blue) for
1D curves for (a) 6-connectivity and (b)
26-connectivity. (a) (b)

Figure 1.6: Voxelising a surface

Figure 1.7: Intersection targets (black lines)
for 2D surfaces for (a) 6-connectivity and
(b) 26-connectivity. (a) (b)

1.4 Exercises 9

1.4 Exercises
1. Can you devise a formula to compare the space occupied by:

a) encoding all voxels in a grid linearly
b) using a sparse encoding with individual voxels
c) using a sparse encoding with an octree

2. Can you think of cases where the rasterisation targets for 1D lines
do not work? Hint: think of short curves.

3. What kind of connectivity is used in the example of Figure 1.4?

1.5 Notes and comments

Voxels are widely used in areas other than geographic information.
For instance, both medical magnetic resonance (MRI) and computer
tomography (CT) scans produce voxel models. Physical simulations also
use voxels since many calculations are easy to do using regular grid
structures, eg finite-element analysis. Games sometimes use voxels as
well, both for calculations and to render graphics. It is worth noting that
many of the techniques developed in these fields are just as applicable to
geographic information as well.

4D grids using 3D+time are also sometimes used, both in geographic
information and elsewhere. Some of the earliest papers to mention this
are: Mason et al. (1994), who implemented a system using a 4D grid of
ocean temperatures with support for interpolation and generalisation
operations, and Bernard et al. (1998), who implemented a 4D grid of
atmospheric variables (eg temperature, wind or pollution), which can be
used for simulations.

A common use of the representations covered here, especially voxel grids
and octrees, is spatial indexing. Cells can thus be used to store other
kinds of data, eg ids of objects, memory addresses with data, or a subset
of a point cloud.

The original paper describing quadtrees is Finkel and Bentley (1974),
whereas that for octrees isMeagher (1980). Bintrees (Samet andTamminen,
1985) are an alternative that split dimensions alternately rather than all
at once. If you are curious about more types of trees used in hierarhical
subdivisions, have a look at the section titled ‘Spatial data partitioning
trees’ in this Wikipedia template: https://en.wikipedia.org/wiki/Te
mplate:CS_trees.

The voxelisation algorithm covered here is described by Laine (2013),
although it might be easier to understand the implementation described
in Nourian et al. (2016). Alternative targets to the ones described in this
lesson are shown in both papers.

https://en.wikipedia.org/wiki/Template:CS_trees
https://en.wikipedia.org/wiki/Template:CS_trees

10

Bibliography

Bernard, L., B. Schmidt, and U. Streit (1998). AtmoGIS — Integration
of atmospheric models and GIS. Proceedings of the 8th International
Symposium on Spatial Data Handling. Ed. by T. Poiker and N. Chrisman.

Finkel, R. and J. Bentley (1974). Quad Trees: A Data Structure for Retrieval
on Composite Keys. Acta Informatica 4.1, pp. 1–9.

Laine, S. (2013). A Topological Approach to Voxelization. Computer
Graphics Forum 32.4, pp. 77–86.

Mason, N. C., M. A. O’Conaill, and S. B. M. Bell (1994). Handling four-
dimensional geo-referenced data in environmental GIS. International
Journal of Geographical Information Systems 8.2, pp. 191–215.

Meagher, D. (1980). Octree Encoding: a New Technique for the Representation,
Manipulation and Display of Arbitrary 3-D Objects by Computer. Tech. rep.
Rensselaer Polytechnic Institute.

Nourian, P., R. Gonçalves, S. Zlatanova, K. Arroyo Ohori, and A. V.
Vo (Jan. 2016). Voxelization Algorithms for Geospatial Applications:
Computational methods for voxelating spatial datasets of 3D city
models containing 3D surface, curve and point data models. MethodsX
3. ISSN: 2215-0161, pp. 69–86.

Samet, H. and M. Tamminen (1985). Bintrees, CSG trees, and time.
SIGGRAPH ’85. Ed. by P. Cole, R. Heilman, and B. A. Barsky. Vol. 19. 3.
ACM, pp. 121–130.

	Voxels and voxelisation
	Exhaustive enumeration models
	Hierarchical subdivision models
	Voxelisation
	Exercises
	Notes and comments

