
Figure 1.1: A cube can be represented im-
plicitly based on the six square faces that
bound it.

boundary representation
b-rep
surface modelling

Jordan curve theorem

Boundary representation Lesson 1.2

1.1 What is boundary representa-
tion? . . . . . . . . . . . . . . . . . . 1

1.2 Objects with holes . . . . . . . 2
1.3 Non-manifolds . . . . . . . . . 3
1.4 Topological concepts . . . . . . 4
1.5 Data structures for meshes . . 5
1.6 Exercises . . . . . . . . . . . . . . 8
1.7 Notes and comments . . . . . . 8

In the first lesson of the course, we discussed how 3D modelling is done
through a series of abstractions of the real world. One of the chief reasons
to do so is to decrease the complexity of what needs to be modelled at
each step, with the aim to successively break complex problems into
simpler problems until they can be (more easily) solved.

Boundary representationworks using this principle. Rather than modelling
a 3D object through a volumetric representation, it instead models the
object implicitly by representing the 2D surface that bounds it (Figure 1.1).
In this way, it is possible to use one of the many data structures that are
used to represent 2D meshes, which are significantly simpler than the
data structures used to directly represent arbitrary volumes.

However, it is very important to note that not all 3D objects can be
represented using boundary representation with most common 2D
mesh data structures without issues. The main culprits are non-manifold
objects, which have properties that make representing them ambiguous,
as well as objects with holes, which need to be stored using certain
techniques. External data structures might also be needed to keep track
of disconnected set of objects, since it might not be possible to have access
to them otherwise.

1.1 What is boundary representation?

Boundary representation, also known as b-rep or surface modelling, is a
method that involves representing an =-dimensional object through its
(= − 1)-dimensional boundary. Most of the time this term is used in
the context of 3D modelling, where the aim is to represent a 3D object
implicitly through its 2D boundary. That being said, boundary repre-
sentation is also common in 2D as well, where we sometimes represent
polygons based on the line segments that bound them, and it is the main
method used in 1D, where most of the time we represent line segments
based on the two points that bound them (Figure 1.2a)—as opposed to
representing them based on something like a line equation. Boundary
representation can thus be used several times when representing a single
3D model: to represent a 3D volume as a set of 2D surfaces, each 2D
surface as a set of 1D line segments or curves, and each 1D line segment as
a pair of 0D points—or often 2D polygonal surfaces directly as sequences
of 0D points (Figure 1.2b).

Boundary representation works because of what is known in 2D as the
Jordan curve theorem, which states that a closed curve separates the
plane into two parts: an interior surface and an exterior surface. In practical
terms, this means that if you draw a closed curve (ie a loop) on a sheet of
paper, the curve separates the sheet into two parts—an interior one that is
bounded on the outside by the curve, and an exterior one that is bounded

cba Ken Arroyo Ohori, Hugo Ledoux and Ravi Peters. This work is licensed under a Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/)
(last update: February 6, 2021)

http://creativecommons.org/licenses/by/4.0/


2 1 Boundary representation

Figure 1.2: Boundary representation as
applied to: (a) 1D line segments repre-
sented implicitly through their two bound-
ing points, and (b) a polygon represented
by implying that it is bounded by a set
of line segments, which are themselves
bounded by consecutive pairs of points in
a sequence of points (plus the last and the
first).

!"!#
(a) (b)

Jordan-Brouwer theorem

hole
cavity

disconnected graph

on the outside by the edges of the sheet (ie its outer boundary) and on
the inside by the curve (ie as an inner boundary). In higher dimensions,
this principle is known as the Jordan-Brouwer theorem, which in 3D
says that a closed surface separates 3D space into two parts: an interior
volume and an exterior volume.

For our purposes, what the above theorems mean is that if we have a
comprehensive method to represent a 2D surface, we can also use it to
implicitly represent many 3D volumes with minimal modifications. The
specifics of these modifications depend on the data structure that we are
using, but it often is as simple as adding an extra coordinate for each
point (ie (G, H) becoming (G, H, I)).

1.2 Objects with holes

As hinted in the last paragraph, there are however some 3D volumes
that are tricky to store using boundary representation. The most obvious
ones are objects with 3D holes (ie cavities), since just like the paper sheet
example described previously, they are bounded by one outer surface and
possibly several inner surfaces (one per cavity). Less obviously, objects
with 2D faces with holes can have exactly the same problem with certain
data structures (Figure 1.3a), since a surface can be bounded by an outer
ring and possibly multiple inner rings.

Both of these cases are problematic for the same reasons. In the simplest
case, it can be because of a data structure is only built to store one
ring/surface (eg a single list of vertices for a ring). However, the most
common issue is that even when multiple rings/surfaces can be stored,
the structures representing holes can end up separated from the rest of
the data structure, resulting in a disconnected graph. In other words, it
might be impossible to navigate from the outer boundary of an object to
its inner boundaries and vice versa.

Figure 1.3: Two different techniques to
handle holes in (a) a volume with 2D faces
with holes: (b) splitting the volume into
two parts and (c) using a bridge edge. (a) (b) (c)



1.3 Non-manifolds 3

bridge edge

non-manifold

homeomorphism

manifold

non-manifold

While holes can cause problems when modelling objects using boundary
representation, these are relatively easy to solve. The three most common
approaches are:

1. splitting volumes into multiple parts in such a manner that the
2D or 3D holes lie between different objects (Figure 1.3b), then
somehow semantically marking that the parts belong to the same
object (eg by using the same attribute id);

2. storing holes just like other (filled) objects, marking them as holes
semantically (eg with a special attribute or id), and then storing a
list of holes for each object as a sort of attribute, from which they
can then be easily accessed;

3. using one bridge edge per hole, which are special edges that join
each inner boundary to the outer boundary (Figure 1.3c). The end
result of this approach is that objects are only bounded by a single
outer boundary, which wraps around the original outer boundary
and all of the former inner boundaries. Bridge edges might also be
marked semantically as such, although it is possible to tell that an
edge is a bridge edge because it is surrounded on all sides by the
same 2D/3D object.

1.3 Non-manifolds

In addition to the above mentioned objects with holes, the other kind
of objects that are tricky to store using boundary representation are
non-manifolds. However, in order to precisely describe what these are, we
need to introduce some concepts from topology, which will allow us to
describe them in terms of topological characteristics.

Mathematically, a homeomorphism is a continuous function that also has a
continuous inverse. This is a sort of equivalence relation (=) in topology,
and so it can be used to tell that two objects are topologically equivalent
or homeomorphic. In informal terms, applying a homeomorphism is
like continuously deforming an object (without making holes in it or
glueing different parts of it). If an object can be transformed to another
through this process, they are said to be homeomorphic (Figure 1.4).
Homeomorphisms are important because of one key characteristic: they
preserve all topological properties. This means that they can be used to
relate an arbitrary object to a simpler well-known one, which then has
known topological properties (eg Euclidean 2D space or a sphere).

A manifold is a shape that is homeomorphic to the Euclidean space of
a certain dimension, ie a point in 0D, a line in 1D, a plane in 2D or 3D
space in 3D. An intuitive way to think about this is that a manifold locally
resembles Euclidean space, even if globally it does not. For example, a
line and a circle are both 1-manifolds, while a plane, a sphere and a torus
are all 2-manifolds. Meanwhile, non-manifolds are shapes where you
can find at least one point where this condition is not true (Figure 1.5a
and 1.6). In geomatics, when people refer to a non-manifold, they are
usually referring to a non-2-manifold in the context of modelling a 3D
object using boundary representation.

Based on these definitions, we can now better describe exactly which 3D
objects can be stored using boundary representation without problems:



4 1 Boundary representation

Figure 1.4: A typical joke about topology
says that (a) a coffee mug and (b) a donut
are homeomorphic. (a) (b)

Figure 1.5: (a) The 1D boundary around a
polygon is a non-1-manifold because the
space around a vertex (highlighted in a
red circle) is not homeomorphic to a line.
(b) & (c) However, the polygon can still be
represented using a loop of oriented edges
by created a duplicate vertex at that loca-
tion (shown as two half disks), but there
are two ways in which this can be done.
Note that these are not equally desirable
as (c) results in a disconnected structure
(just like a hole). (a) (b) (c)

Figure 1.6: The 2D surface around this
volume is a non-2-manifold because it is
not homeomorphic to a plane.

genus

those that are bounded by exactly one 2-manifold surface. The intuitive
logic that explains this is: 2D space is (by definition) a 2-manifold surface,
which means that we are able to store objects that are bounded by a
surface that is homeomorphic to it. Another intuitive way to think about
this is to consider a counterexample in terms of the Jordan curve theorem:
if we draw a closed loop that crosses itself (eg the number 8), which is
clearly a non-manifold, we will end up with more than one interior part
(or possibly an ambiguous situation).

While the obvious solution might be to disallow non-manifold objects,
they are common in practice, and so we need to have methods to deal
with them, even if these methods might introduce additional complexity
to boundary representation. In order to overcome this problem, there are
two approaches that are typically used:

1. splitting non-manifold objects into multiple manifold parts, then
marking the parts as belonging to the same object using semantics;

2. creating duplicate elements at the same location (Figure 1.5b
and 1.5c). In 2D this usually involves duplicate vertices, whereas in
3D this might involve duplicate edges as well.

1.4 Topological concepts

In addition to holes and manifolds, there are other topological concepts
that are commonly used when characterising objects in 3D modelling.
These are not directly related to the present lesson, but we will make a
small tangent to introduce them here.

The genus of a surface is the maximum number of closed loop cuts we



1.5 Data structures for meshes 5

(a) (b) (c)
Figure 1.7: Surfaces with: (a) genus 1, (b)
genus 2, (c) genus 3. From Wikimedia
Commons.

Figure 1.8: AMöbius strip is a one-sided
surface, equivalent to glueing a paper strip
with a single 180◦ twist, and it is the most
typical example of a non-orientable sur-
face. Note however that this is only true
when it is modelled without thickness.
FromWikimedia Commons.

orientability

triangle mesh

can make in it without causing it to become disconnected (Figure 1.7).
Note the ‘maximum’ here, since it is always possible to select loops that
cause a surface to become disconnected. Intuitively, it is the number of
‘handles’ it has. A sphere thus has genus 0, whereas a torus (eg the donut
and coffee mug) have genus 1 because we can cut the handle of the object
and still have a connected surface.

A surface is said to be orientable when it is possible to define a normal
vector at every point of the surface in a consistent manner, ie without
sudden reversals of the vector direction when moving long the surface.
Since real-world objects are always orientable (Figure 1.8), this might
seem like a non-issue in practice. However, real-world objects are always
volumetric—no matter how thin they are—but when these are modelled,
they are often modelled as surfaces (ie without thickness), which makes
it possible to have unorientable surfaces.

1.5 Data structures for meshes

Moving back to the storage of 3D models using boundary representation,
there are a large number of data structures that can be used for this
purpose. However, there are three broad approaches: (i) data structures
using triangles as base elements; (ii) data structures that use edges or half-
edges as base elements; and (iii) data structures that have polygons, edges
and vertices as base elements. We will show one or two characteristic
examples for each approach, with the understanding that there are many
possible variations of each of them.

1.5.1 Triangle-based structures

The first typical approach relies on a surface being triangulated, ie being
split entirely into triangles, so that you have a triangle mesh. This is



6 1 Boundary representation

Figure 1.9:A triangle-based data structure
consists of a set of triangles as base ele-
ments, each of which has links to (a) its
three adjacent triangles (as pointers or ids).
Then, the usual approach is to also have
links to (b) its three incident vertices (as
pointers or ids), which can stored as sep-
arate elements with (c) their coordinates.
Alternatively, it is also possible to store the
vertex coordinates directly in the triangles,
but this means that the coordinates are
storedmany times—once in every triangle
that is incident to it.

(a) (b) (c)

Figure 1.10: A triangle strip is eas-
ily defined as a list of vertices
(0, 1, 2, 3, 4 , 5 , 6, ℎ). Every triangle is
formed by three consecutive vertices in
the list.

quad-edge data structure
quad

often desirable because in a triangle mesh, each triangle is known to have
only up to three adjacent triangles and only up to three incident vertices,
whereas in a polygon it can be any number. Because of this, a triangle-
based data structures (Figure 1.9) can use fixed-length data structures to
store all their elements (eg arrays), which are more efficient.

Since there are specific elements for triangles and vertices, triangle-based
data structures make it easy to store attributes both for triangles and for
vertices. For instance, it is possible to mark all the triangles belonging
to a certain surface semantically through the use of a common attribute,
which could be a pointer or id linking to a surface element. Such a surface
could contain attributes common to all the triangles that represent it.

Surfaces with holes are generally not a problem for triangle-based data
structures. When these are triangulated (using a constrained triangula-
tion), holes become connected to the rest of the structure. If a hole of a
surface contains a different surface, the triangles adjacent to it can simply
link to the triangles representing it. If it does not, the triangles can have a
special link or value corresponding to empty space (eg null). The same
applies for triangles on the edge of the surface

In addition to the basic approach, there are variations that use more
compact representations of triangle-based structures, usually by joining
multiple adjacent triangles that are arranged in a certain way. Examples
of these are triangle strips (Figure 1.10) and triangle fans/stars (triangles
that are all incident to a certain vertex).

1.5.2 Edge-based structures

When we want to allow for polygons in a surface, the most common
approach is to use data structures where the base elements are either
edges or half-edges. Let us look at one example of each.

The quad-edge data structure uses edges as base elements. Each edge
then stores what is known as a quad (Figure 1.11) and links to one or
both of its incident vertices. Note that these quads are named as such
because they store four piece of information and are unrelated to quads
(ie quadrilaterals) in computer graphics.

In a common easy implementation of the quad-edge data structure, the
edge is first given an arbitrary orientation. In this manner, there are
vertices at the start and end of the edge, which can be used as names to
access them, and there are thus left and right polygons, which means that



1.5 Data structures for meshes 7

half-edge data structure

DCEL
half-edge

incidence graph

the quad links can thus be called something like left-previous, left-next,
right-previous and right-next.

While this approach works fine, it is important to note that there will not
be a consistent orientation between adjacent edges. That is, polygons will
not be defined by an oriented loop of edges going around them. Vertices
can thus have multiple edges pointing away from them and toward them.
As an example of the consequences of this, getting all the vertices of a
polygon is a bit awkward, since for each iteration where we arrive at
an edge, we need to check the orientation of the edge and program a
different logic for each orientation.

The alternative is to split each edge into two linked half-edges with
opposite orientations. This approach is called the half-edge data structure,
of which are many variations in practice, such as the doubly connected
edge list (DCEL). In the DCEL (Figure 1.12), half-edges are the base
element, but there are also elements for vertices and faces. Vertices store
their coordinates and a link to one face-edge starting from it, whereas
faces store a link to a half-edge on its outer boundary. If holes are
present, faces also typically store one link to a half-edge on each of its
inner boundaries. Note however that since a face can have any number
of holes, this means that a variable-length data structure (eg a linked
list) will need to be used. Vertices, half-edges and faces can each also
contain fields for attributes. Storing attributes for edges will thus result
in duplicate information (or additional edge objects that are linked to
both half-edges).

In general, half-edge data structures are more verbose than edge-based
data structures. However, they make navigating through the structure
much easier. For instance, obtaining all the vertices of a polygon in order
in the DCEL simply involves finding a half-edge in the polygon, and
then iteratively following the next links until we get back to the original
half-edge.

1.5.3 Incidence graphs

The last approach that is common in practice is the incidence graph. It is
a simple data structure where 8-dimensional elements are linked to the
(8 − 1)-dimensional elements that bound it (Figure 1.13). This approach
makes it easy to store attributes for faces, edges and vertices without
redundancy. However, it needs variable-length data structures to store
the edges that bound each face. Because of this, it is commonly used

Figure 1.11: In the quad-edge data struc-
ture, an edge stores a quad, which contains
four records pointing to other quads cor-
responding to the previous and next ori-
ented edges for the polygons on both of
its sides.



8 1 Boundary representation

Figure 1.12: (a) Three adjacent polygons
are represented using (b) the DCEL. In
the DCEL, a half-edge 4 is linked to two
vertices (called the origin and the destina-
tion) and to the face that it is incident to,
and is linked to its next half-edge (on the
same face) and its twin half-edge (on the
adjacent face). (a) (b)

Figure 1.13: In the incidence graph, (a)
faces have a list with links to the edges
that bound them, (b) edges have links to
the two vertices that bound them, and (c)
vertices contain their coordinates.

(a) (b) (c)

where this limitation is not a problem (eg in text files), but it is avoided
when efficiency is more important and where variable-length fields are a
problem (eg in databases).

1.6 Exercises
1. Why can we represent a 2D polygon directly as a sequence of 0D

points (ie skipping line segments entirely) but we cannot do the
same in 3D?

2. Exactly where is the surface of Figure 1.6 not homeomorphic to a
plane?

3. Splitting objects is a simple solution to deal with both holes and
non-manifolds. However, in terms of semantics it is often not
desirable. Why is that?

4. In a triangle fan or star, we need to store vertices in a specific order.
Why is that?

5. How can you obtain all the edges incident to a vertex in order (ie as
you rotate around the vertex) using the quad-edge data structure?
How about for the DCEL? Which is easier?

1.7 Notes and comments

The original placewhere the Jordan curve theorem is introduced is Jordan
(1887), which is an old French textbook on calculus and differential
equations. The generalisation to higher dimensions was apparently
done by Lebesgue (1911) and Brouwer (1911), although this is somewhat
contentious (van Dalen, 2013, Ch. 5).

If you want to see how the coffee mug and the donut from Figure 1.4 are
homeomorphic, watch this video: https://www.youtube.com/watch?v
=9NlqYr6-TpA.

https://www.youtube.com/watch?v=9NlqYr6-TpA
https://www.youtube.com/watch?v=9NlqYr6-TpA


1.7 Notes and comments 9

A nice description of a star-based data structure is available in Blandford
et al. (2005), or in 3D in Ledoux and Meĳers (2013).

The quad-edge data structure was originally described in Guibas and
Stolfi (1985). The first data structure of that type is likely the winged-edge
data structure Baumgart (1975).

As for half-edge data structure, the first example is likely the 2D combina-
tional map (Edmonds, 1960). The DCEL is originally described in Muller
and Preparata (1978), but you can find nicer descriptions in Worboys and
Duckham (2004) or de Berg et al. (2008).



10

Bibliography

Baumgart, B. G. (1975). A polyhedron representation for computer vision.
AFIPS ’75 Proceedings of the May 19-22, 1975, national computer conference
and exposition. ACM, pp. 589–596.

Blandford, D. K., G. E. Blelloch, D. E. Cardoze, and C. Kadow (2005).
Compact representations of simplicial meshes in two and three dimen-
sions. International Journal of Computational Geometry and Applications
15.1, pp. 3–24.

Brouwer, L. (1911). Beweisdes JordanschenSatzes fürden=-dimensionalen
Raum. Mathematische Annalen 71, pp. 314–319.

de Berg, M., M. van Kreveld, M. Overmars, and O. Schwarzkopf (2008).
Computational Geometry: Algorithms and Applications. 3rd. Springer-
Verlag.

Edmonds, J. (1960). A Combinatorial Representation of Polyhedral Sur-
faces. Notices of the American Mathematical Society 7.

Guibas, L. J. and J. Stolfi (1985). Primitives for the manipulation of
general subdivisions and the computation of Voronoi diagrams. ACM
Transactions on Graphics 4.2, pp. 74–123.

Jordan, M. C. (1887). Cours d’Analyse. Gauthier-Villars.
Lebesgue, M. (1911). Sur l’invariance du nombre de dimensions d’un
espace et sur le theorème de M. Jordan relatif aux varieté fermées.
Comptes rendus de l’Académie des Sciences 152, pp. 841–844.

Ledoux, H. and M. Meĳers (2013). A star-based data structure to store
efficiently 3D topography in a database. Geo-spatial Information Science
16.4, pp. 256–266.

Muller, D. E. and F. P. Preparata (1978). Finding the intersection of two
convex polyhedra. Theoretical Computer Science 7, pp. 217–236.

van Dalen, D. (2013). L.E.J. Brouwer — Topologist, Intuitionist, Philosopher.
Springer Science+Business Media.

Worboys, M. and M. Duckham (2004). GIS: A Computational Perspective.
2nd. CRC Press.


	Boundary representation
	What is boundary representation?
	Objects with holes
	Non-manifolds
	Topological concepts
	Data structures for meshes
	Exercises
	Notes and comments


