
geometry
topology
semantics

Introduction to 3D modelling of
the built environment: reality,

data models and data structures Lesson 1.1

1.1 Hierarchical abstractions in the
3D modelling process 1
1.2 Spatial concepts 2
1.3 Data models 4
1.4 Data structures 5
1.5 Exercises 6
1.6 Notes and comments 6

The 3D modelling of the built environment involves the creation, ma-
nipulation and use of 3D digital representations of real-world objects,
including buildings, terrains and infrastructure. Over the years, a variety
of such representations have been created, each of themmodelling objects
in a different way and targetting different applications.

These representations usually include a mix of geometric (ie description
of shape), topological (ie adjacencies and connectivity) and semantic (ie
attributes and other properties) information. While these can all be com-
bined in arbitrary ways, in practice it is desirable to limit the complexity
modelling only the aspects that are needed for an application, and to do
so in a manner that is both flexible (to be applicable to all the different
objects that can be modelled) and consistently structured (to allow for
automated processing using simple rules).

All of these desirable characteristics oppose each other, and so solutions
involve finding the compromises that suit a particular application best.
However, since different applications tend to have some elements in
common, it is not necessary to build a completely new representation
for each application. Instead, we can reuse representational aspects as a
sort of building blocks, from which we can then come up with a good
solution for a use case we are working on.

In this introductory lesson to the course, we start by explaining how this
process is split into a hierarchy working at different levels (from high
to low). While the exact definition of these levels is a bit arbitrary, we
follow a common model for geographic information, splitting them into
spatial concepts, data models and data structures. We introduce each of
these levels in its own section, including some basic examples for each.
Throughout most of the course, we will look at different data models
and data structures in detail.

1.1 Hierarchical abstractions in the 3D
modelling process

3D modelling is done through a series of abstractions of the real world,
each working at a different abstraction level. For instance, a typical high-
level abstraction coulddivide theworld intodiscrete objects (eg individual
buildings or plots of land), whereas a lower-level abstraction could
divide each surface of a wall into triangles (ie meshing) while satisfying
certain characteristics (eg minimum angles). Each abstraction is thus
an engineered partial solution to a complex modelling problem, which
comes with its own technical choices, advantages and disadvantages,
and applications for which it is suitable (or not).

cba Ken Arroyo Ohori, Hugo Ledoux and Ravi Peters. This work is licensed under a Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/)
(last update: February 5, 2021)

http://creativecommons.org/licenses/by/4.0/

2 1 Introduction to 3D modelling of the built environment: reality, data models
and data structures

Figure 1.1: Some typical applications of
3D city models (Biljecki et al., 2015).

ISPRS Int. J. Geo-Inf. 2015, 4 2843

1. Introduction

A 3D city model is a representation of an urban environment with a three-dimensional geometry of
common urban objects and structures, with buildings as the most prominent feature [1–4]. A typical
3D city model is derived from various acquisition techniques, for instance, photogrammetry and laser
scanning [5–8], extrusion from 2D footprints [9,10], synthetic aperture radar [11–15], architectural
models and drawings [16–18], handheld devices [19,20], procedural modelling [21–26], and volunteered
geoinformation [27–29]. Seemingly, visualisation dominated the early uses of 3D city models. However,
as the technology developed, 3D city models have become valuable for several purposes beyond
visualisation, and are utilised in a large number of domains [30–35] (Figure 1). Such diversity and
the increasing number of applications render it difficult to keep track of the utilisation possibilities of
3D city models. It appears that, despite the near-ubiquitousness of 3D city models, a comprehensive
inventory of 3D applications does not exist (examples of previous efforts are presented in Section 2).
Because each 3D application requires its own specific 3D data, a comprehensive inventory can help
linking the requirements to specific applications. Contributing to these efforts, as we do in this paper,
helps identifying the requirements emerging across domains to generate 3D data that is fit-for-purpose.
Such an inventory also provides a reference for user testing, thus contributes to identifying the eventual
understanding of the models’ fitness-for-use.

Figure 1. 3D city models may be applied in a multitude of application domains for
environmental simulations and decision support.

In Section 3 we present the methodology of our survey, and discuss barriers we encountered. It is
important to note that throughout this manuscript, we focus on the state of the art regarding the utilisation
of 3D city models; however, we also use the terms 3D GIS and 3D geoinformation when the context

geoinformation chain

For example, a 3D citymodel can be stored in a .jsonfilewhere its entities
are structured according to the CityJSON data model, with geometries
represented as solids, and where each semantic surface is a triangulated
mesh. Alternatively, we can have a classified point cloud of the same city
stored in an indexed series of .las files representing tiles. Out of these
two representations, the point cloud can be easily used as base elevation
data or for many visualisation-based operations with comparatively little
processing, but even simple spatial analysis operations (eg counting the
number of buildings or computing their volume) can be very complex.
On the other hand, the 3D city model could be used for complex spatial
analysis operations (eg wind and solar radiance simulations; Figure 1.1),
but some objects that are present in the real-world (eg trees and fences)
might be lost in the model or present only as artefacts.

In the next sections, we look at three different levels at which abstractions
are made: (i) spatial concepts, which work entirely on the basis of human-
level congnition; (ii) data models, which are higher-level abstractions
closer to the way we structure the world; (iii) and data structures, which
are lower-level abstractions close to how they are implemented in a
computer.

Even if it is not entirely clear at this point, this means that there can be
many possible data models that use a certain spatial concept, and that
there can be many different data structures that encode the same data
model, each of which is best suited for a given application.

1.2 Spatial concepts

In order to conceptualise and structure the real world, 3D models of the
built environment rely on some common spatial concepts. Some of the
most common ones are:

Geoinformation processing (ie the geoinformation chain) Fromaprac-
tical perspective, a commonway to consider how space is structured
is based on the usual steps in the geoinformation chain (or pipeline).
This considers that one starts from the acquisition of data, either
through traditional measurements (using anything from a tape
measure to a total station) or using a variety of sensing technologies,

1.2 Spatial concepts 3

object

field

Euclidean geometry

Figure 1.2: Since there is exactly one line
that passes through any pair of points,
two points can be used to describe a line
in Euclidean geometry.

Cartesian geometry

Figure 1.3: A point in 3D described
by an ordered list of three coordinates
(?G , ?H , ?I).

point set geometry

including active methods using the reflections of electromagnetic
waves (eg all forms of lidar and radar) and vibrations (eg under-
water echo sounding and seismic methods), as well as passive
methods (eg digital images using any spectrum).
These ‘raw’measurements are then used to create simple primitives
(eg the points in a point cloud or the plane equation of a wall),
and these are then further processed and assembled to create more
complex 3D objects.
For instance, a typical process can go from a set of lidar full
waveforms to a point cloud by deciding on appropriate return
power thresholds, then to a series of meshes by reconstructing
surfaces and fitting planes, and finally to a 3D city model with
semantic surfaces by classifying and assembling the surfaces into
3D objects. In every step of such a process, there is certain amount
of information loss, but (ideally) the information that remains is
more structured and meaningful.

Objects and fields From a theoretical GIS standpoint, the typical way to
conceptualise space recognises two ways of looking at the world:
objects and fields. The objects view considers that space is empty and
is populated by discrete objects. In many cases, this results in an
approach where objects are modelled individually (eg a building
modelled as a set of surfaces), although they can also be aggregated
or generalised into (eg a set of adjacent buildings with the same
height modelled as a single block).
By contrast, the fields view considers that there are certain attributes
that fill space and have a value everywhere in it. The typical
examples are physical characteristics, such as the elevation of a
terrain, the temperature or the wind speed. Since we generally
cannot know or store the values of fields in every possible location,
of which there might be infinitely many, the standard approach is
to mathematically model an approximation (eg elevation modelled
as an interpolated set of points).

Euclidean, Cartesian and point set geometry When we model objects
mathematically, we often rely on abstract geometric shapes, such as
point, lines and planes. The simplest mathematical descriptions for
these are based on Euclidean geometry. Euclidean geometry starts
from a small set of geometric axioms considered to be intuitively
obvious (Figure 1.2). Using these axioms, it is possible to construct
more complex objects (eg a triangle covering the area between three
points) and to define properties, such as relative distances, angles
and areas. However, objects in Euclidean geometry do not have an
absolute position in space.
Where this notion is required, analytic or Cartesian geometry adds
the concept of coordinates to the objects of Euclidean geometry,
which makes it possible to uniquely describe the absolute location
of a point (Figure 1.3), the length of a line or the angle between two
lines. This analytic description also makes it possible using algebra
to compute the exact value of some properties, such as the distance
between two points (as described by their coordinates).
Pure analytical solutions can be however tricky (eg points placed
at irrational values), so some other definitions used for modelling
objects rely on point set geometry. Thismethoduses themathematical
definitions of sets and of operations between sets to define objects

4 1 Introduction to 3D modelling of the built environment: reality, data models
and data structures

graph

duality

algebraic topology

data model

as sets of (often infinitely many) points. For instance, we can say
that a sphere is a point set where the distance to a given point (ie the
centre) is equal to a value, or to define an object as the intersection
between two other objects (Figure 1.4).

Figure 1.4: Based on two balls A and B,
other objects that can be defined using
Boolean set operations using point set ge-
ometry.

(a) A (purple) and B (blue) (b) Intersection: A ∩ B

Graphs and algebraic topology The concepts from different branches
of geometry are useful to describe the overall shape of objects, but
in practice we often need to add concepts of topology as well. For
instance, this is often used to describe relationships between objects,
such as adjacency or connectivity. In the geometric modelling of
the built environment, topology is especially important because
the standard approach to model complex objects is to divide them
into small elements, and thus we also need to describe how these
elements are connected.
In its simplest form, topology often takes the form of a graph,
where the elements are vertices that are connected by (directed)
edges. Vertices often correspond to geometric points and edges to
geometric line segments, but this is not always the case. For instance,
in a dual representation, vertices can correspond to polygons and
the edges connecting them can correspond to the connections
between adjacent polygons.
Algebraic topology takes the concept of a graph further by allowing
us to use higher-dimensional objects (eg faces and volumes), which
will be used to describe simplices and cells in some of the data
models that we will discuss later in the course. It also makes it
possible to describe objects based on sets, as well as to create
operations that modify these sets.

1.3 Data models

A data model is a high-level formalised way to structure information,
generally using a set of abstract classes, relationships between them, and
attributes to store information about them. In the context of geomatics,
these classes are often spatial representations of real-world objects. Some
aspects that are typically defined by a data model include the kind of
discretisation of space that is used (eg a grid) and the formalmathematical
bases of the model (eg describing the basic elements of a data model as
tuples). Certain data models also include formalised operations that can
be performed on their defined classes.

Data models are deliberately ambiguous and far from a computer rep-
resentation, and so implementing them involves various engineering
decisions and can be tricky. Moreover, without some specific encoding

1.4 Data structures 5

 OGC 08-007r1

Copyright © 2008 Open Geospatial Consortium, Inc. 23

8 Spatial model

Spatial properties of CityGML features are represented by objects of GML3‟s geometry model. This model is
based on the standard ISO 19107 „Spatial Schema‟ (Herring 2001), representing 3D geometry according to the
well-known Boundary Representation (B-Rep, cf. Foley et al. 1995). CityGML actually uses only a subset of the
GML3 geometry package, defining a profile of GML3. This subset is depicted in Fig. 8 and Fig. 9. Furthermore,
GML3‟s explicit Boundary Representation is extended by scene graph concepts, which allow the representation
of the geometry of features with the same shape implicitly and thus more space efficiently (chapter 8.2).

8.1 Geometric-topological model

The geometry model of GML 3 consists of primitives, which may be combined to form complexes, composite
geometries or aggregates. For each dimension, there is a geometrical primitive: a zero-dimensional object is a
Point, a one-dimensional a _Curve, a two-dimensional a _Surface, and a three-dimensional a _Solid (Fig. 8).
Each geometry can have its own coordinate reference system. A solid is bounded by surfaces and a surface by
curves. In CityGML, a curve is restricted to be a straight line, thus only the GML3 class LineString is used.
Surfaces in CityGML are represented by Polygons, which define a planar geometry, i.e. the boundary and all
interior points are required to be located in one single plane.

<<Geometry>>
gml::_GeometricPrimitive

<<Geometry>>
gml::_Solid

<<Geometry>>
gml::_Surface

<<Geometry>>
gml::_Curve

+position : gml::DirectPosition [1]

<<Geometry>>
gml::Point

<<Geometry>>
gml::CompositeSolid

<<Geometry>>
gml::Solid

<<Geometry>>
gml::CompositeSurface

<<Geometry>>
gml::TriangulatedSurface

<<Geometry>>
gml::Triangle+stopLines : gml::LineStringSegment [0..*]

+breakLines : gml::LineStringSegment [0..*]
+maxLength : gml::LengthType [1]
+controlPoint : gml::posList [1]

<<Geometry>>
gml::TIN

<<Geometry>>
gml::Polygon

+orientation : gml::SignType [0..1]

<<Geometry>>
gml::OrientableSurface

<<Geometry>>
gml::CompositeCurve

+position : gml::DirectPosition [2..*]

<<Geometry>>
gml::LineString

<<Geometry>>
gml::_Ring

+position : gml::DirectPosition [4..*]

<<Geometry>>
gml::LinearRing

<<Geometry>>
gml::Surface

<<Geometry>>
gml::_SurfacePatch

<<Geometry>>
gml::_Geometry

<<Geometry>>
gml::Rectangle

exterior

patches

1

1..*

*

exterior

trianglePatches

1

1

*

*

1

interior

exterior

0..1

*

0..*

1

interior

exterior

curveMember
0..1

1

*

1..*

*

*

baseSurface

1

solidMember

0..2

*

surfaceMember1..*

*

1..*

Visual Paradigm for UML Community Edition [not for commercial use] Visual Paradigm for UML Community Edition [not for commercial use]

Fig. 8: UML diagram of CityGML‟s geometry model (subset and profile of GML3): Primitives and Composites.

Combined geometries can be aggregates, complexes or composites of primitives (see illustration in Fig. 10). In
an Aggregate, the spatial relationship between components is not restricted. They may be disjoint, overlapping,
touching, or disconnected. GML3 provides a special aggregate for each dimension, a MultiPoint, a MultiCurve, a
MultiSurface or a MultiSolid (see Fig. 9). In contrast to aggregates, a Complex is topologically structured: its
parts must be disjoint, must not overlap and are allowed to touch, at most, at their boundaries or share parts of
their boundaries. A Composite is a special complex provided by GML3. It can only contain elements of the same
dimension. Its elements must be disjoint as well, but they must be topologically connected along their bounda-
ries. A Composite can be a CompositeSolid, a CompositeSurface, or CompositeCurve. (cf. Fig. 8).

Figure 1.5: The geometry classes used in the CityGML 2.0 standard (OGC, 2012).

raster
vector

schema

data structure

rules, different people will make different engineering decisions and thus
likely implement a data model very differently.

The typical examples of data models used in (older) geomatics literature
are the raster and vector data models. These examples are historically
accurate because they are clear-cut high-level descriptions that can each
be implemented in a variety of ways. For instance, rasters can be encoded
by traversing them in a given order and listing the values in each cell one
by one (known as exhaustive enumeration), by splitting it into successive
halves of a uniform value using a :-d tree, or by compressing it using a
Wavelet transform (eg in JPEG 2000 images).

However, it is worth noting that nowadays the term data model is most
often used to refer to highly complex abstractions of the real world
that are suitable for a particular domain. These can include a mixture
of geometric, topological and semantic components. Data models are
often available in the form of a schema—a descriptive document that
specifies the data model in a formal manner. Schemas are often described
using UMLmodels (eg CityGML; Figure 1.5), although using a computer-
processable language (eg JSON schema in CityJSON, EXPRESS in IFC,
XSD in CityGML) is generally better since it allows processing the schema,
such as for validation.

1.4 Data structures

Adata structure is a low-level description that specifies how to implement
a data model, or occasionally a combination of multiple data models.
Data structures are definedwith little to no ambiguity, specifying features
such as what sort of storage should be used for a given primitive (eg an

6 1 Introduction to 3D modelling of the built environment: reality, data models
and data structures

Figure 1.6: The half-edge data structure
can store sets of polygons based on ele-
ments known as half-edges, which repre-
sent an edge within a face. A half-edge 4 is
related to two vertices (the origin and the
destination) and one face, and is linked to
its next half-edge (on the same face) and
its twin half-edge (on the adjacent face).

array or a linked list). As opposed to a data model, creating a computer
implementation of a data structure is thus relatively straightforward, and
different people implementing the same data structure will end up with
very similar implementations.

Data structures can be specified using the same methods as data models,
eg UML models, but more explicit descriptions are also possible. For
example, database tuples or table definitions in SQL can be used when
a database implementation is expected, or snippets of source code
(generally in the style of the C programming language) can be used when
it is expected to be used in memory.

Following a typical example, if we assume that we are implementing
a standard vector data model with polygons, we could choose to do
so using a half-edge data structure (Figure 1.6). Note that the low-level
definition of a half-edge pretty much defines the structure of its computer
implementation.

1.5 Exercises
1. What is noisier: the ‘raw’ measurements in the early steps of the

geoinformation chain, or the more processed products of the last
steps.

2. Give an example of a field that it not a natural physical characteristic.
3. Consider whether a point cloud is a data model or a data structure.

If it is a data model, what sort of data structure could be used to
represent it?

4. Describe an alternative data structure that can be used to represent
the vector data model (ie not the half-edge data structure). What
are some advantages/disadvantages of each data structure?

1.6 Notes and comments

Frank (1992) is the original source that divides representations into spatial
concepts, data models and data structures. It is partly out of date since it
long predates the semantic data models that are used nowadays, but it is
still a good paper, and a precursor to the ones we described here.

Chapter 2 of Ken’s PhD thesis∗ describes all the mathematical notions
from this lesson in a bit more detail. Section 3.1† lists many data models
and data structures with references to the original papers where they
came from.

Couclelis (1992) is the original source that clearly formalised the difference
between objects and fields. Goodchild (1992) links objects and fields to
specific computer models that are suitable for them.

Mäntylä (1988) has an excellent overview of different 3D representations.
Some other good standard alternatives are Requicha (1980), Hoffmann
(1992), and Foley et al. (1995). A newer book accessible from the campus
is Salomon (2011).
∗ https://3d.bk.tudelft.nl/ken/en/thesis/math.html
† https://3d.bk.tudelft.nl/ken/en/thesis/modelling-background.html#se:
spatial-modelling

https://3d.bk.tudelft.nl/ken/en/thesis/math.html
https://3d.bk.tudelft.nl/ken/en/thesis/modelling-background.html#se:spatial-modelling
https://3d.bk.tudelft.nl/ken/en/thesis/modelling-background.html#se:spatial-modelling

Bibliography 7

Bibliography

Biljecki, F., J. Stoter, H. Ledoux, S. Zlatanova, and A. Çöltekin (2015).
Applications of 3D City Models: State of the Art Review. ISPRS
International Journal of Geo-Information 4.4, pp. 2842–2889.

Couclelis, H. (1992). People Manipulate Objects (but Cultivate Fields):
Beyond the Raster-Vector Debate in GIS. Theories and Methods of Spatio-
Temporal Reasoning in Geographic Space. Ed. by A. U. Frank, I. Campari,
and U. Formentini. Vol. 639. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 65–77.

Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes (1995). Computer
Graphics: Principles and Practice in C. Addison-Wesley Professional.

Frank, A. U. (1992). Spatial concepts, geometric data models, and geomet-
ric data structures. Computers & Geosciences 18.4, pp. 409–417.

Goodchild, M. F. (1992). Geographical Data Modeling. Computers &
Geosciences 18.4, pp. 401–408.

Hoffmann, C. M. (1992). Geometric and solid modeling. Morgan Kaufmann
Publishers.

Mäntylä, M. (1988). An introduction to solid modeling. New York, USA:
Computer Science Press.

OGC (2012). OGC City Geography Markup Language (CityGML) Encoding
Standard. Version 2.0.0. Open Geospatial Consortium.

Requicha, A. A. G. (1980). Representations for Rigid Solids: Theory,
Methods, and Systems. Computing Surveys 12.4, pp. 437–464.

Salomon, D. (2011). The Computer Graphics Manual. Ed. by D. Gries and
F. B. Schneider. Vol. 2. Texts in Computer Science. Springer London.

	Introduction to 3D modelling of the built environment: reality, data models and data structures
	Hierarchical abstractions in the 3D modelling process
	Spatial concepts
	Data models
	Data structures
	Exercises
	Notes and comments

