
GEO1004.2020 Lesson 7.1

Conversions between 3D representations
and formats

Lesson 7.1*

Contents

1 Conversions for fields 2
1.1 Points to voxels . 2
1.2 Voxels to points . 3
1.3 Conversion to isosurfaces . 3

2 Conversions for objects 5
2.1 Points to b-rep . 5
2.2 Points/surfaces/volumes to voxels . 5
2.3 b-rep to mesh . 5
2.4 IFC to/from CityGML . 6

3 Notes and comments 6

4 Exercises 7

This lesson describes different conversions between 3D representations and formats that a geomatics
engineer might have to perform. It does not claim to be an overview of all potential conversions, but it
rather offers insights about the algorithms and methods most commonly used, and points out pitfalls
to be aware of.

The lesson is divided into two distinct parts:

Fields: conversions that are performed when we are dealing with a field, let it be the temperature or the
concentration of a certain chemical in the air (modelled as a 3D volume). In most cases, the data
that are collected to study a field will be sample points in 3D space (x, y, z) to which an attribute
is attached. Voxels are usually what is exchanged and analysed.

Objects: when we are dealing with data (points, surfaces, and volumes) that represent the boundaries
of objects in our environment. These can be sample points from lidar or dense matching of im-
ages, or the b-rep of some buildings (which have been reconstructed from different acquisition
methods).

*cba Hugo Ledoux and Ken Arroyo Ohori. This work is licensed under a Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/)
(last update: February 5, 2021)

http://creativecommons.org/licenses/by/4.0/

GEO1004.2020 Lesson 7.1

(a) (b) (c) (d) (e)

Figure 1: (a) input sample points. (b) size/location of output grid. (c) 9 interpolations must be per-
formed (at locations marked with ◦): at the middle of each cell. (d) the convex hull of the sample
points show that 2 estimations are outside, thus no interpolation. (e) the resulting raster.

1 Conversions for fields

1.1 Points to voxels

The conversion from scattered points to grid is trivial: simply interpolate at regular locations in three
dimensions (which represent the centre of each voxel) and output the results in the appropriate format
(grids can be stored in many ways). Figure 1 shows the process in two dimensions.

All the interpolation methods discussed during GEO1015 (Chapters 4 and 5) generalise to three dimen-
sions.

Nearest neighbour. Already discussed in Lesson 2.2.

Linear interpolation in tetrahedra Already discussed in Lesson 2.2.

Natural neighbour interpolation. Already discussed in Lesson 2.2.

Inverse distance weighting (IDW). The generalisation of this method to three dimensions is straight-
forward: a searching sphere with a given radius is used. The same problems with the one-dimensionality
of the method will be even worse because the search must be performed in one more dimension. The
method has too many problems to be considered has a viable solution for fields as found in geosciences:
the interpolant is not guaranteed to be continuous, especially when the dataset has an anisotropic dis-
tribution (and anisotropy is very frequent in 3D samples, see Lesson 2.2), and the criterion has to be
selected carefully by the user. Note that the implementation problems are also similar to the ones en-
countered with the previous method, and an auxiliary data structure must be used to avoid testing all
the points in a dataset.

Kriging. All of the most common kriging varieties generalise to three dimensions without major
changes, including simple kriging and ordinary kriging. In the simplest case, covariance functions,
experimental variograms and fitted functions work exactly the same as in 2D but are computed using
distances in 3D.

However, the vertical direction has a much weaker correlation than the horizontal directions in many
fields, eg temperature, pressure and humidity. Anisotropy is thus a much more significant factor in 3D
and almost always has to be modelled. A minimal solution is a custom distance function that scales
the vertical direction. A better (but still simple) solution involves computing multiple experimental
variograms: two (for the horizontal plane x, y and for the vertical direction z) or three (for x, y and z).

2 of 7

GEO1004.2020 Lesson 7.1

p1

p2

error(p1) > εmax

error(p2) < εmax

Figure 2: The importance measure of a point can be expressed by its error. When this error is greater
than a given threshold εmax, the point is kept (p1), else it is discarded (p2).

1.2 Voxels to points

The conversion of a voxel to a set of scattered points is not a simple operation. Given a three-dimensional
grid, it is possible to create one data point at the centre of each voxel. Notice however that potentially
a lot of the neighbouring points will be the same value, and thus a lot of redundancy is stored.

A better approach to this problem is to consider it as a simplification problem. Given a set S of points
in R3 representing a field f (where each point p in S as an attribute a attached to itself), the aim is to
find a subset R of S which will approximate f as accurately as possible, using as few points as possible.
The subset R will contain the ‘important’ points of S, ie a point p is important when a at location p can
not be accurately estimated by using the neighbours of p.

The two algorithms described in the GEO1015 book (Section 8.3) can in theory be generalised; Figure 2
shows the idea for the 1D case. Both strategies (decimation and refinement) can be implemented.

The error associated with each point p, denoted error(p), is calculated by interpolating at location p
after p has been temporarily removed from the field, and comparing the value obtained with the real
attribute a of p, thus error(p) = |a− estimation|. As shown in Figure 2 for a one-dimensional case, when
the error is more than εmax then the point must be kept, if it is less then the point can be discarded.

The method for 2D fields in GEO1015 uses linear interpolation in triangles, ie after p has been temporar-
ily deleted from DT(S), the triangulation is updated and the estimation is obtained with the triangle
containing location p. However, since mentioned earlier, using the DT in 3D for interpolation is not ad-
vised (because they contain slivers). As an alternative, one could use for instance the natural neighbour
interpolation, and each error is calculated by interpolating in the field at the location and comparing
the real and the estimated value.

1.3 Conversion to isosurfaces

Given a trivariate field f (x, y, z) = a, an isosurface is the set of points in space where f (x, y, z) = a0,
where a0 is a constant. Isosurfaces, also called level sets, are the three-dimensional analogous concept
to isolines (also called contour lines), which have been traditionally used to represent the elevation in
topographic maps. Figure 3 shows one concrete example.

In two dimensions, isolines are usually extracted directly from a TIN or a regular grid. The idea is to
compute the intersection between the level value (eg 200m) and the terrain, represented for instance
with a TIN. Each triangle is scanned and segment lines are extracted to form an approximation of an
isoline.

3 of 7

GEO1004.2020 Lesson 7.1

(a) (b) (c)

Figure 3: An example of an oceanographic dataset where each point has the temperature of the water,
and three isosurface extracted (for a value of respectively 2.0, 2.5 and 3.5) from this dataset.

10

124

6 10

124

6 10

124

6

Figure 4: Ambiguous extraction of an isoline where the attribute is 8.

In three dimensions, for a trivariate field, the same idea can be used to extract surfaces.

From voxels: Marching Cubes. The principal and most known algorithm for extracting an isosurface
form a voxel dataset is the Marching Cubes. The isosurface is computed by finding the intersections
between the isosurface and each voxel/cube of the representation. Linear interpolation is used along
the edges of each cube to extract ‘polygonal patches’ of the isosurface. There exist 256 different cases
for the intersection of a surface with a cube (considering that the value of each of the eight vertices of
a cube is ‘above’ of ‘under’ the threshold), although if we consider the symmetry in a cube that comes
down to only 15 cases. The major problem with the marching cubes algorithm is that the isosurface
may contain ‘holes’ or ‘cracks’ when a cube is formed by certain configurations of above and under
vertices. The ambiguities are shown in Figure 4 for the two-dimensional case when two vertices are
above the threshold, and two under, and they form a ‘saddle’. The three-dimensional case is similar,
with many more cases possible.

From tetrahedral mesh: Marching Tetrahedra. Although it is possible to fix the ambiguities, as
is the case in two dimensions, the simplest solution is to subdivide each cell into simplices (cubes into
tetrahedra in 3D). The so-called Marching Tetrahedra algorithm is very simple: each tetrahedron is tested
for the intersection with the isosurface, and triangular faces are extracted from the tetrahedra by linear
interpolation on the edges. The resulting isosurface is guaranteed to be topologically consistent (ie will
not contain holes), except at the border of the dataset. But again, if a big tetrahedron is used where
the vertices are assigned to a value lower than the minimum value of the field, then all the isosurfaces
extracted are guaranteed to be ‘watertight’. The nice thing about the algorithm is that only three cases
for the intersection of the isosurface and a tetrahedron can arise:

1. the four vertices have a higher (or lower) value. No intersection.

2. one vertex has a higher (or lower) value, hence the three others have a lower (or higher) value.
Three intersections are thus defined, and a triangular face is extracted. See Figure 5(a) on the left.

3. two vertices have a higher (or lower) value and the others have a lower (or higher) value. Four
intersections are thus defined. To ensure that triangular faces are extracted (better output for

4 of 7

GEO1004.2020 Lesson 7.1

(a) (b)

Figure 5: (a) Two cases for the intersection of an isosurface and a tetrahedron: either 3 or 4 intersections.
(b) Three cases when some vertices (the grey ones) have exactly the same value as the isosurface.

Figure 6: b-rep model of BK-City, from Lesson 2.1

graphics cards), the polygon can be split into two triangles, with an arbitrary diagonal. See Fig-
ure 5(a) on the right.

The only degenerate cases possible are when one or more vertices have exactly the same value as the
isosurface. These cases are handled very easily, and the intersection is simply assumed to be at the
vertices themselves (see Figure 5(b)). Notice that the case when three vertices have exactly the same
value, then the complete face of the tetrahedron must be extracted to ensure topological consistency.

2 Conversions for objects

2.1 Points to b-rep

In the context of the built environment, this would most likely mean that from a point cloud, a LoD2
model of the buildings, and eventually of other objects such as trees and bridges, are reconstructed.

See Lesson 2.1.

2.2 Points/surfaces/volumes to voxels

The conversions of points, curves, surfaces and volumes to voxels are covered in Lesson 3.1.

2.3 b-rep to mesh

For the purposes of this lesson, a mesh is a collection of simplices that define the (3D) shape of an object
(eg a building, a tree, or a bridge).

If we take the 3D model of a building (say BK-City, see Figure 6), this model is formed of several planar
faces (hopefully) forming a closed 2-manifold.

In practice, if someone wants the mesh of this b-rep, it could mean two different structures:

5 of 7

GEO1004.2020 Lesson 7.1

Figure 7: BK-City LoD2 b-rep tetrahedralised.

2D triangulation of each surface: the constrained Delaunay triangulation, or simply an arbitrary con-
strained triangulation, for each of the polygon can be created. These are independently per-
formed for each surface, and involve transforming the 3D coordinate of the vertices of the surface
to a 2D system; this coordinate system is on the plane defined by the surface. Notice that this
assumes that all input surfaces of the b-rep are planar, if it is not the case then finding a projection
that preserves the topology of the polygon might not be possible.

tetrahedralisation of the volume defined by the surfaces the constrained tetrahedralisation of the vol-
ume defined by the b-rep; see Section 5 of the Lesson 2.2.

Figure 7 shows one example, notice that the whole 2-manifold is tetrahedralised, but here only some
tetrahedra (in grey) are shown. The surfaces of the b-rep also get meshed (each surface is triangulated)
in the same process.

2.4 IFC to/from CityGML

The conversion between IFC and the CityGML data model (in either direction) is a very actual topic
(many organisation would like to be able to realise it) but it is also riddled with problems caused by the
differences in semantics, in data formats, and in the way geometries are modelled. Automatic conver-
sion with commercial software, eg FME or ArcGIS, will often “work”, but because of the complexity of
some formats, information will often be lost in the conversion. Be aware.

The following scientific paper summarises the issues and proposes one solution. This solution is
(mostly) based on the methods and algorithms we have studied so far in this course.

It should be noticed that this paper is a summary of the MSc thesis of Sjors Donkers, who studied MSc
Geomatics in 2014–2015. This MSc thesis gives you an idea of what a (very good) thesis should look
like, in content and in scope.

3 Notes and comments

Lorensen and Cline (1987) first describe the Marching Cubes algorithm to extract isosurfaces from vox-
els.

6 of 7

GEO1004.2020 Lesson 7.1

W To read or watch

Donkers S, Ledoux H, Zhao J, and Stoter J (2016). Automatic conversion of IFC datasets to geo-
metrically and semantically correct CityGML LOD3 buildings. Transactions in GIS, 20(4):547–569

PDF: https://3d.bk.tudelft.nl/hledoux/pdfs/16 tgis ifcitygml.pdf

Full MSc thesis: http://resolver.tudelft.nl/uuid:31380219-f8e8-4c66-a2dc-548c

3680bb8d

4 Exercises

1. Converting samples points to voxels require totally different algorithm if the samples point rep-
resent a field or an object. Discuss why.

2. If the b-rep model of BK-city contains intersecting surfaces and has gaps/holes, will it be possible
to mesh the model?

3. For terrains, linear interpolation in a TIN is very popular and used. Why is it less popular for
trivariate fields?

4. In the methodology of Donkers et al. (2016), why are the dilation and erosion operators used?
Are they always necessary? Can you think of a simple dataset where they could be skipped?

References & further reading

Donkers S, Ledoux H, Zhao J, and Stoter J (2016). Automatic conversion of IFC datasets to geometrically
and semantically correct CityGML LOD3 buildings. Transactions in GIS, 20(4):547–569.

Lorensen WE and Cline HE (1987). Marching cubes: A high resolution 3D surface construction algo-
rithm. Computer Graphics, 4:163–168.

7 of 7

https://3d.bk.tudelft.nl/hledoux/pdfs/16_tgis_ifcitygml.pdf
http://resolver.tudelft.nl/uuid:31380219-f8e8-4c66-a2dc-548c3680bb8d
http://resolver.tudelft.nl/uuid:31380219-f8e8-4c66-a2dc-548c3680bb8d

	Conversions for fields
	Points to voxels
	Voxels to points
	Conversion to isosurfaces

	Conversions for objects
	Points to b-rep
	Points/surfaces/volumes to voxels
	b-rep to mesh
	IFC to/from CityGML

	Notes and comments
	Exercises

