
GEO1004.2020 Lesson 3.2

Constructive solid geometry and Nef polyhedra

Lesson 3.2*

Contents

1 What is constructive solid geometry? 2

2 Background: set theory and Boolean set operations 2

3 Defining objects using point set geometry 4

4 Boolean point set operations 5

5 Nef polyhedra 6
5.1 Local pyramids . 7
5.2 Computing Boolean point set operations on Nef polyhedra 7
5.3 3D Nef polyhedra in practice: selective Nef complexes . 8

6 Exercises 8

7 Notes and comments 10

Until this lesson, we have only discussed data models that represent 3D geometries very explicitly.
In other words, we have been specifying objects’ shape through simple elements that have a direct
geometric interpretation. For instance, a tetrahedron’s shape can be known by looking only at the
coordinates of its four vertices, and a polyhedron’s shape by looking at the set of its bounding polygons
(which have a shape that is easily obtained from a list of vertices). Even in a compact representation
of a voxel, its geometry can be easily known based on a few simple parameters, such as: the absolute
location and orientation of the voxel grid, the cell spacing along each axis, the order of the voxels in a
linear encoding of the grid, and an index to identify the voxel on this encoding.

Since the elements in explicit representations can be interpreted easily, these kinds of explicit represen-
tations are usually the easiest for computers to process. However, they also have disadvantages: since
objects are often composed of many small elements, they can be very inefficient with space and can
also make it difficult for people to define objects. For instance, defining a shape that approximates a
sphere using only polygons will require many small polygons to obtain a decent approximation, and
manually obtaining the polygons to use (and their vertex coordinates) is not trivial.

The alternative to the explicit approach is thus to use more implicit representations, in which objects are
represented as sequences of operations on geometric primitives. Thus, the exact shape of the objects being
represented is only known after performing the geometric operations, which can be rather complex.

*cba Ken Arroyo Ohori. This work is licensed under a Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/)
(last update: February 5, 2021)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

GEO1004.2020 Lesson 3.2

Figure 1: A CSG object represented as a tree of Boolean set operations on a sphere, a cube and three
cylinders. From Wikimedia Commons.

However, the indirect approach makes it possible to use primitives that are better suited to a certain
task, primitives that are easier to define, or simply fewer primitives overall.

1 What is constructive solid geometry?

Constructive solid geometry (CSG) is a general approach that combines many of techniques that are
typically used with implicit representations, including primitive instancing, half-space intersections
and Boolean set operations. Most other data models that use implicit representations can thus be con-
sidered as variations of CSG, usually with more restrictions on the operations that can be performed or
the primitives that can be used.

CSG represents objects as hierarchies of Boolean set operations on other objects (Figure 1). A CSG object is
thus a tree, where each non-leaf node is a Boolean set operation on its children, and where the leaves
are mathematical definitions of point sets, usually describing very simple objects. In theory, arbitrary
point sets can be used, although implementations usually limit them to some of the following:

Primitive instancing defines simple solids parametrically, such as a sphere based on a radius and the
coordinates of its centre;

Arbitrary polyhedra defined using mesh data structures and boundary representation; and

Half-spaces (Figure 2) defined using a plane equation and a direction.

The next section of the handout is a short summary of the mathematical background for this lesson,
which consists of set theory, Boolean set operations and their mathematical notation. Feel free to skip
it if you are familiar with them. In the next two sections, we look at how the two main elements of
CSG work in theory: (i) the definition of simple objects as point sets, and (ii) how these elements can
be combined using Boolean point set operations. The final section covers Nef polyhedra, which are
arguably the best known basis to implement CSG in practice.

2 Background: set theory and Boolean set operations

Set theory is the branch of mathematics that studies sets, which are collections of abstract objects. These
objects can be anything, including other sets.

2 of 11

GEO1004.2020 Lesson 3.2

Figure 2: A plane separates 3D space into two parts on either side of it. A plane and a direction can
thus be used to specify the geometry of one of these halves, which forms an unbounded space on all
directions except one.

Set theory starts by considering the existence of a given domain of objects from which one may build
sets, which is known as the universe set and denoted as U. If an object a is part of a set X, it is denoted
as a ∈ X, which is read as ‘a is an element of X’. If a is not part of a set X, it is denoted as a /∈ X, which
is read as ‘a is not an element of X’. Usually lower case is used for simple elements and upper case for
sets.

There are two common ways to describe the elements in a set, both using curly braces, ie { and }. One
way to do so is to list all the elements of the set one by one. For instance, the set {1, 2, 3} is the set
containing 1, 2 and 3 as elements (and no others). The other way to do so is to specify one or more rules
that the elements of the set need to fulfil. For instance, the set {x : x is a prime number} consists of all
prime numbers. It is read as ‘x, such that x is a prime number’.

The order in which the elements in a set are defined does not matter. That is, {1, 2, 3} and {3, 2, 1} are
the same set. The elements in a set are also unique, and duplicate items are ignored by convention.
That is, {1, 2, 3} and {1, 2, 3, 2, 1} are also the same set.

A set may contain an infinite number of elements (eg as the prime number example above), or no
elements at all, in which case it is a special set known as the null set and denoted as {} or ∅. Other
commonly used sets with a special notation and name are: the natural numbers (N), the real numbers
(R), the rational numbers (Q) and the integers (Z).

In order to build more complex sets, the concepts and notation from mathematical logic are used, in
particular propositional logic. Propositional logic works with propositions, which are sentences that are
either true or false, but not both. These propositions might be altered and combined using various
symbols expressing various notions, such as: and (∧), or (∨), not (¬), implies (⇒), is implied by (⇐), if and
only if (⇔), for all (∀) and exists (∃). These symbols correspond to their names. For instance, a∧ b is true
only when both a and b are true, a ∨ b is true when a or b are true (or both), and ¬a is true when a is
false.

Using these concepts it is possible to state relationships between sets. For instance, we can define that
A and B are equal (A = B) when an element is in A if and only if it is also in B, which can be denoted
as ∀x : x ∈ A⇔ x ∈ B. A set A is called a subset of a set B (A ⊆ B), or B is a superset of A (B ⊇ A),
when if an element is in A then it is also in B, denoted as ∀x : x ∈ A ⇒ x ∈ B. If A ⊆ B but A 6= B,
ie there is at least one extra element in B, then A is a proper subset of B (A ⊂ B), or alternatively B is
a proper superset of A (B ⊃ A). Note that these relationships are akin to ‘less than’ (<), ‘less or equal
than’ (≤), ‘equal to’ (=), ‘greater or equal than’ (≥), and ‘greater than’ (>) for numbers.

It is also possible to use propositional logic to create new sets by defining certain operations between
sets, in particular Boolean set operations, consisting of intersection, union, difference and complement.
The intersection of the sets A and B, denoted as A ∩ B, consists of all the elements that are both in
A and in B, ie A ∩ B = {x : x ∈ A∧ x ∈ B}. The union of the sets A and B, denoted as A ∪ B,
consists of all the elements that are either in A or in B, ie A∪B = {x : x ∈ A∨ x ∈ B}. The difference
between sets A and B, denoted as A− B, consists of all the elements that are in A but not in B, ie

3 of 11

GEO1004.2020 Lesson 3.2

A−B = {x : x ∈ A∧ x /∈ B}. The complement of a set A, denoted as ¬A, consists of all the elements
that are in the universe set but are not in A, ie ¬A = {x : x ∈ U∧ x /∈ A}.

Apart from sets, it is also possible to consider tuples of elements, which are sequences of ordered ele-
ments. A tuple containing exactly two elements is known as a pair, one containing three elements is a
treble and one containing n elements is an n-tuple. Tuples are denoted using parenthesis, ie (and).

A common operation that generates tuples is the Cartesian product. The Cartesian product of sets A

and B, denoted as A× B, is defined as {(a, b) : a ∈ A∧ b ∈ B}. In other words, it is a set of pairs,
where the first element of a pair is an element of A and the second element of the pair is an element of
B. This can be generalised to more than two sets, such that the n-fold Cartesian product of n sets is an
n-tuple. The n-fold Cartesian product of a set A with itself, ie A×A× · · ·A, is denoted as An.

3 Defining objects using point set geometry

Point set geometry applies the notions of set theory to define the geometry of objects as sets of points.
The usual definition maps 1D space (ie the line) to the set of real numbers (ie R), and so 2D space (ie
the plane) is R2 and 3D space is R3.

Individual points in 2D and 3D space can be considered as elements of R2 and R3. For instance,
we can denote a point p in 2D space as p ∈ R2 or in 3D space as p ∈ R3. Note that this notation
perfectly matches the way in which points are usually defined based on their coordinates. For example,
by stating p = (x, y, z) ∈ R3, we simply mean that x, y, z ∈ R, ie that x, y and z are arbitrary real
numbers.

Based on these definitions, we can then define sets that describe specific geometric objects. For instance,
we can start by considering how any point p between two points p1 and p2 at different locations can be
obtained as a sort of weighted average of p1 and p2, where the relative weight of the two points tell us
that we’re closer to one point than to another. If we put this into an equation, we get:

p =
ap1 + bp2

a + b
. (1)

Note that we divide everything by a + b to make sure that the weights add up to one. Also, note it is
possible to use negative weights to get points that are on the line that passes through a and b but not
between a and b. Expanding on this, the line L passing through p1 and p2 is defined by considering all
possible values of a and b. That is:

L =

{
ap1 + bp2

a + b
: a, b ∈ R

}
. (2)

In the case of a line, we can get rid of one parameter by substituting t = a/(a + b), which would yield
L = {tp1 + (1− t)p2 : t ∈ R}. Note how at t = 0 we get p2, at t = 1 we get p1, and when 0 < t < 1 we
get the line segment between p1 and p2. Note also how this definition of a line works both in 2D and
3D.

Generalising from Equation 2, we can also define a similar equation for a plane P from three non-
collinear points p1, p2 and p3 as:

P =

{
ap1 + bp2 + cp3

a + b + c
: a, b, c ∈ R

}
. (3)

In 3D, if we substitute the equality (=) of the previous equation for a strict inequality (< or >), we get
instead an equation to represent the half-spaces respectively below and above the plane (such as those
previously shown in Figure 2). An equation of this form is typically stored in the leaves of a CSG tree,
eg as the three non-collinear points in the equation above, or as the coefficients of an equation of the
form ax + by + cz + d = 0, plus a direction to specify which half-space to use.

4 of 11

GEO1004.2020 Lesson 3.2

(a) (b)

(c) (d)

Figure 3: Based on (a) two balls A and B, other objects can be defined using Boolean set operations,
such as: (b) the intersection A∩B, (c) the union A∪B, and (d) the difference A−B.

For the sake of uniformity and ease of processing, many CSG implementations only use half-spaces.
However, several simple axis-aligned 3D solids also have easy point set definitions that can be used to
store them as primitives based on a few parameters, including:

balls ie the space inside a sphere, which can be defined as (x− cx)2 + (y− cy)2 + (z− cz)2 < r2, where
r is the radius and c = (cx, cy, cz) is the centre;

cuboid interiors ie box-shaped objects, which can be defined using intervals for the minimum and
maximum values it has along each axis, ie xmin < x < xmax ∧ ymin < y < ymax ∧ zmin < z < zmax;
and

cylinder interiors by checking whether a point lies within a radius for two axes, and within an interval
for the third.

Other common objects are more general versions of these objects, such as ellipsoid interiors, paral-
lelepipeds, cones, etc. As for non-axis aligned simple solids, they can be supported by special nodes in
the CSG tree that represent geometric transformations by their parameters (rather than Boolean point
set operations), such as translations, rotations and scaling, or more general ones like affine transforma-
tions or arbitrary transformation matrices by storing their elements one by one.

4 Boolean point set operations

In order to create objects other than those directly added to an implementation, CSG relies on Boolean
point set operations (Figure 3). Arbitrary polyhedra can be represented in this way by first splitting
them into convex parts (which might require Steiner vertices), and then representing the convex parts
as intersections of half-spaces (one per face). These operations, which are located in the non-leaf nodes
of the CSG tree, combine the geometry of the point sets described by their children (using the methods
described in the previous section).

5 of 11

GEO1004.2020 Lesson 3.2

(a) (b)

Figure 4: (a) A Nef polygon is represented indirectly as (b) a set of local pyramids (circles). At every
local pyramid, the polygon (red) becomes an angular interval. Incident edges become points at the
endpoints of these intervals.

Boolean point set operations are based on the Boolean operations on sets, which are mainly:

union of the sets A and B, denoted as A ∪B, is the set containing the elements that are in A or B, ie
A∪B = {x : x ∈ A∨ x ∈ B};

intersection of the sets A and B, denoted as A ∩B, is the set containing the elements that are in both
A and B, ie A∩B = {x : x ∈ A∧ x ∈ B};

set difference of the sets A and B, denoted as A−B or A \B, is the set containing the elements that
are in A but not in B, ie A−B = {x : x ∈ A∧ x /∈ B};

symmetric difference of the sets A and B, denoted as A4B, A	B or A⊕B, is the set containing the
elements that are either in A or in B but not in both, ie A4B = {x : x ∈ A−B∪B−A}.

The key point about these operations is that they do not need to perform any geometric computations,
since it is possible to tell if an element (ie point) is in the new point set by just checking whether it
is in its children’s point sets. It is thus trivially easy to do Boolean point set operations on individual
points.

Based on this knowledge, we could build a crude CSG implementation directly on a point cloud or
voxel grid by: (i) for each leaf node, checking whether each point/voxel meets the point set definition
in the node, and (ii) for each non-leaf node, applying the Boolean set operations on the point sets
represented by its child nodes point by point. However, since this solution is not applicable to other
data models, we will look at a better solution that works better in practice.

5 Nef polyhedra

Nef polyhedra, named after Walter Nef, are an alternative representation of polygons and polyhedra that
is based on the concept of a local pyramid, which is a structure that stores the neighbourhood information
around every vertex (Figure 4). Polygons and polyhedra can be stored as a set of local pyramids and
their location (as a set of 2D/3D coordinates).

6 of 11

GEO1004.2020 Lesson 3.2

5.1 Local pyramids

The local pyramid of a vertex contains the intersection of an infinitesimally small sphere (in 3D) or circle
(in 2D) with the volumes, faces and edges incident to this vertex. An incident volume thus becomes
a face, an incident face becomes an edge, and an incident edge becomes a vertex on the surface of the
local pyramid sphere/circle, essentially lowering the dimension of every object by one.

The key thing to understand here is the following: a 2D/3D object represented as a set of local pyramids (and
their location) can individually be stored using 1D/2D data structures. This is a process akin to boundary
representation, but it does not have problems with non-manifold objects (unlike boundary representa-
tion).

In practice, computing the local pyramid at a local vertex is also a relatively simple operation. We will
not go through the details here (see the notes), but in 2D, it involves computing the angle of its neigh-
bouring vertices as you rotate around the vertex, and marking the intervals between these vertices with
the polygons that you pass through while doing so. In 3D, it is a more complex operation involving
the computation of an arrangement of lines in a spherical coordinate system, and the location of every
neighbouring vertex is defined by two angles (rather than one).

5.2 Computing Boolean point set operations on Nef polyhedra

Boolean point set operations (and many other geometric operations) can be computed in three steps:
subdivision, selection and simplification. We will discuss what each of these involves.

Subdivision involves computing an overlay of the input polyhedra, thus creating the overall structure
where the result will be put (ie the vertices, edges, faces and volumes).

In 2D, this is also a computation of a line arrangement (also known in GIS as map overlay),
where the output is a set of vertices and edges representing all the input lines of both polygons.
Vertices (ie local pyramids) will be located at the position of all input vertices and at every new
intersection between lines.

In 3D, it is a similar operation, but the new vertices (ie local pyramids) are located at line-polygon
intersections as well. These can be computed by computing a plane passing through the polygon
and intersecting it with the line.

Selection involves checking whether each face (in 2D) or volume (3D) should be part of the output or
not, marking it as such in the relevant parts of the local pyramids. This is done by testing whether
it is in the interior or exterior of the input Nef polygons/polyhedra.

Simplification involves removing unnecessary structures in a way that does not alter the point set that
is represented, which is akin to the dissolving operations common in GIS. This is done by deleting
local pyramids when they do not actually represent a new vertex, or when are not subdivided.

Figure 5 shows an example of how this works in practice in 2D. A 2D Boolean point set operation
starts from two Nef polygons A = (g, b, f , i) and B = (a, f , k, j, e, c)—each of which is stored as a set of
local pyramids at its corresponding vertices. As shown previously in Figure 4, each of these 2D local
pyramids can be stored as a list of 1D intervals, eg at vertex a, polygon B = [225, 315], where the values
are in degrees.

The operation first computes the intersections between the line segments (as an overlay problem), cre-
ating the new vertices d and h. The location of these vertices can be calculated using the equations
of the corresponding lines. The vertices of each polygon and the intersection points between the line
segments yield the local pyramids to be considered.

Then, the local pyramid intervals for both polygons at all of these locations are computed. For instance,
at vertex a, A = ∅ and B = [225, 315]. A Boolean set operation is then computed by applying it to the
local pyramids (ie to the intervals). For instance, at vertex a, ¬A = U = [0, 360] and ¬B = [315, 225]
(by inverting the range), A∪ B = [225, 315] (by combining the ranges), A∩ B = ∅ (by finding common
parts of the ranges), and A− B = ∅ (by removing from the ranges of A those of B).

7 of 11

GEO1004.2020 Lesson 3.2

(a) (b)

Figure 5: Various Boolean point set operations on (a) the Nef polygons A (red) and B (blue) that can be
performed on (b) their local pyramids.

Finally, unnecessary local pyramids can be removed from the output: f in A ∪ B; a, b, c, g, i, j and k in
A ∩ B; and a, c, j and k in A− B.

5.3 3D Nef polyhedra in practice: selective Nef complexes

3D Nef polyhedra and Boolean point set operations on them can be implemented using different data
structures, but an excellent open implementation (see notes) uses a data structure called selective Nef
complexes (Figure 6).

Selective Nef complexes (SNC) use a combination of two half-edge data structures:

• a standard half-edge data structure on 3D space, which stores each face of each polyhedron as a
cycle of edge-uses connecting vertices;

• a half-edge data structure to represent each local pyramid (one per vertex) as a subdivision on
the surface of an (infinitesimally small) sphere.

Each vertex is linked to its sphere map, where each incident volume corresponds to a face on its sphere
map (sface), each incident face corresponds to an edge (sedge), and each incident edge corresponds to
a vertex (svertex). These corresponding elements are linked to each other, which makes it possible to
navigate both on the half-edge data structure in 3D space (eg by going from an edge-use to the next to
cycle around a face) and on the half-edge data structure of a sphere map (eg by going from one sedge
to the next to cycle around an sface).

6 Exercises

1. How can you define a cube using:

a) a parametric representation

b) a b-rep data structure

c) an intersection of half-spaces

2. In the line L = ap1 + (1− a)p2, what is the geometry given by a < 0 and a > 1?

3. Compute the ranges for the local pyramids of some other vertices in Figure 5.

4. In which cases is simplification needed in 2D?

8 of 11

GEO1004.2020 Lesson 3.2

CHAPTER 3. REPRESENTATION SCHEMES

edge−use

opposite edge−use

vertex

sphere map

svertex sed
ge

oriented edge

sphere map

vertex

edge−use

svertex

svertex

svertex

sedge

oriented facet

Figure 3.3: A selective Nef complex: We show one facet with two vertices, their
sphere maps, the connecting edges, and both oriented facets. Shells and volumes
are omitted.

Edge-uses: An edge can have many incident facets (non-manifold situation). We
introduce two oppositely oriented edge-uses for each incident facet; one for
each orientation of the facet. An edge-use points to its corresponding ori-
ented edge and to its oriented facet. We can uniquely identify each edge use
with an shalfedge, or, in the special case, also with an shalfloop.

Facets: We store oriented halffacets as boundary cycles of oriented edge-uses. We
have a distinguished outer boundary cycle and several (or maybe none) inner
boundary cycles representing holes in the facet. Boundary cycles are linked
in one direction. We can access the other traversal direction when we switch
to the oppositely oriented halffacet, i.e., by using the opposite edge-use.

Shells: The volume boundary decomposes into different connected components,
the shells. They consist of a connected set of facets, edges, and vertices
incident to this volume. Facets around an edge form a radial order that is
captured in the radial order of sedges around an svertex in the sphere map.
Using this information, we can traverse a shell completely starting at an ar-
bitrary entry element with a graph search.

Volumes: A volume is defined by a set of shells, one outer shell containing the

22

Figure 6: A selective Nef complex. The standard half-edge structure on 3D space uses faces (as an
oriented facet for each incident polyhedron), edges (as an edge-use for each incident oriented facet)
and vertices. The half-edge structure on the surfaces of the spheres representing local vertices, known
as sphere maps, uses sfaces (per incident polyhedron but not shown here), sedges (per incident face)
and svertices (per incident edge). From Hachenberger (2006).

9 of 11

GEO1004.2020 Lesson 3.2

7 Notes and comments

If you need more help with the mathematical background, check the Wikipedia pages on sets1, set
algebra2.

The earliest description of CSG is likely Requicha and Voelcker (1977, §12.3) and its properties is Re-
quicha and Tilove (1978). However, it is more of a culmination of efforts of many people. For instance,
Shamos and Hoey (1976) and Preparata and Muller (1979) show that it is possible to represent any
convex object (of any dimension) as the intersection of a finite number of half-spaces. In order to see
how such a decomposition can be done, see Chazelle and Dobkin (1979) or Bajaj and Dey (1990). A nice
example of how half-spaces can be stored in practice is Naylor (1990).

Nef polyhedra were originally described in Nef (1978), although a much better description including
the way they work with Boolean set operations is available in Bieri and Nef (1988).

For more background on the line arrangement problem, see the relevant Wikipedia page3. For a
clear description of how to compute one, see de Berg et al. (2008, §2) or the user manual of the
Arrangements 2 package of CGAL4.

Nef polyhedra as a CSG engine in practice is only possible thanks to Seel (2001) in 2D and Hachenberger
(2006) in 3D. They discuss how to compute local pyramids in 2D and 3D, as well as Boolean point set
operations on polygons and polyhedra. They are implemented in the CGAL packages 2D Boolean
Operations on Nef Polygons5 and 3D Boolean Operations on Nef Polyhedra6.

The general scheme to perform geometric operations in three steps (subdivision, selection and simpli-
fication) is discussed by Rossignac and O’Connor (1989).

References & further reading

Bajaj C and Dey TK (1990). Convex decomposition of polyhedra and robustness. Technical report,
Purdue University.

Bieri H and Nef W (1988). Elementary set operations with d-dimensional polyhedra. In Noltemeier H,
editor, Computational Geometry and its Applications, volume 333 of Lecture Notes in Computer Science,
pages 97–112. Springer Berlin Heidelberg.

Chazelle B and Dobkin D (1979). Decomposing a polygon into its convex parts. In Proceedings of the
11th Annual ACM Symposium on Theory of Computing, pages 38–48.

de Berg M, van Kreveld M, Overmars M, and Schwarzkopf O (2008). Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, 3rd edition.

Hachenberger P (2006). Boolean Operations on 3D Selective Nef Complexes Data Structure, Algorithms,
Optimized Implementation, Experiments and Applications. Ph.D. thesis, Saarland University.

Naylor B (1990). Binary space partitioning trees as an alternative representation of polytopes. Computer-
Aided Design, 22(4).

Nef W (1978). Beiträge zur Theorie der Polyeder: mit Anwendungen in der Computergraphik. Herbert Lang,
Bern.

Preparata F and Muller D (1979). Finding the intersection of n half-spaces in time o(n log n). Theoretical
Computer Science, 8(1):45–55.

1https://en.wikipedia.org/wiki/Set (mathematics)
2https://en.wikipedia.org/wiki/Algebra of sets
3https://en.wikipedia.org/wiki/Arrangement of lines
4https://doc.cgal.org/latest/Arrangement on surface 2/index.html
5https://doc.cgal.org/latest/Nef 2/index.html
6https://doc.cgal.org/latest/Nef 3/index.html

10 of 11

https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Algebra_of_sets
https://en.wikipedia.org/wiki/Arrangement_of_lines
https://doc.cgal.org/latest/Arrangement_on_surface_2/index.html
https://doc.cgal.org/latest/Nef_2/index.html
https://doc.cgal.org/latest/Nef_3/index.html

GEO1004.2020 Lesson 3.2

Requicha AAG and Tilove RB (1978). Mathematical foundations of constructive solid geometry: Gen-
eral topology of closed regular sets. Production Automation Project Technical Memorandum 27,
University of Rochester.

Requicha AAG and Voelcker HB (1977). Constructive solid geometry. Technical Memorandum 25,
College of Engineering & Applied Science, The University of Rochester.

Rossignac J and O’Connor M (1989). SGC: A dimension-independent model for pointsets with internal
structures and incomplete boundaries. In Wosny M, Turner J, and Preiss K, editors, Proceedings of the
IFIP Workshop on CAD/CAM, pages 145–180.

Seel M (2001). Planar Nef Polyhedra and Generic Higher-dimensional Geometry. Ph.D. thesis, Saarland
University.

Shamos MI and Hoey D (1976). Geometric intersection problems. In Proceedings of the 17th Annual
Symposium on the Foundations of Computer Science, pages 208–215.

11 of 11

	What is constructive solid geometry?
	Background: set theory and Boolean set operations
	Defining objects using point set geometry
	Boolean point set operations
	Nef polyhedra
	Local pyramids
	Computing Boolean point set operations on Nef polyhedra
	3D Nef polyhedra in practice: selective Nef complexes

	Exercises
	Notes and comments

