
GEO1004.2020 Lesson 3.1

Voxels and voxelisation

Lesson 3.1*

Contents

1 Exhaustive enumeration models 1

2 Hierarchical subdivision models 4

3 Voxelisation 4
3.1 Connectivity . 4
3.2 Intersections with targets (2D) . 5
3.3 Intersections with targets (3D) . 6

4 Exercises 6

5 Notes and comments 10

Voxel models, which are the 3D equivalent of 2D rasters, are a common way to store 3D models of
the built environment using a regular 3D grid (Figure 1). Much like rasters in 2D, they have inherent
limits in precision based on the grid size that is used and can easily grow to very large sizes in terms
of memory, especially with a small grid size. Still, voxel models are easy to use and understand, and
algorithms to process them are typically much simpler than those using other representations, which
also makes them more reliable and robust. These characteristics make voxels an important and widely
used representation to process 3D information in general.

1 Exhaustive enumeration models

Voxels might appear to be a unique data model in terms of 3D representations, but they are actually
only the most used among a type of related representations that are together usually referred to as
exhaustive enumeration. The specifics of these data models differ, but in general they represent objects
by:

1. defining the shape of a domain in which the objects to be represented fit, or alternatively in
which the region of interest of a field fits, eg a bounding box defined by their minimum and
maximum coordinates along each axis;

*cba Ken Arroyo Ohori. This work is licensed under a Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/)
(last update: February 5, 2021)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

GEO1004.2020 Lesson 3.1

(a)

(b)

Figure 1: (a) A mesh model of a house with surrounding terrain and trees and (b) a corresponding voxel
model with the same elements.

2 of 10

GEO1004.2020 Lesson 3.1

2. dividing the domain using a structure of many cells, usually following a regular or semi-regular
pattern that can be defined programmatically (as opposed to explicitly representing the shape of
each individual cell), eg a grid defined by the number of cells along each axis;

3. specifying a well-defined order passing once through each cell of the subdivision, usually also
programmatically (as opposed to explicitly numbering each cell), eg the order and direction of
iteration of the axes in a grid;

4. labelling each cell with values that indicate the object(s) that are in it, or the values of variable(s)
at that location (in the case of fields). The values can then be encoded linearly using the order
defined in the previous step.

We can thus say that what is represented in an exhaustive enumeration is usually composed of four
elements: (i) a set of rules defining the shape of a domain, (ii) a set of rules on how to divide the domain
into cells, (iii) a set of rules that define an order of the cells, and (iv) an encoded linear representation
that represents objects or values for all cells. However, out of these four elements, the first three are
sets of rules that are generally very simple, and thus they are stored encoded in a minimal way or not
at all (ie only implied by the context).

Based on these standard characteristics, we can see that exhaustive enumeration representations use
space differently from other data models. In most geometric representations, much (or most) of the
space and complexity of a data structure is devoted to creating a custom structure that individually
describes the shape of the objects being represented. By contrast, in exhaustive enumeration, objects’
shapes are instead specified according to simple rules on a predefined structure, and the vast majority
of the space is thus devoted to specifying which objects are present in which cells (or the values in each
cell).

That being said, the statements described above—which in the steps correspond to the actions that are
done for a standard regular 3D grid with voxels—can all differ substantially. By analysing different
possibilities at each step, it is easy to see how the approach can be adapted and extended to form other
types of representations. For instance, consider the following example, which is arbitrarily chosen to
be completely different from a typical voxel grid.

We can start by describing a space using an alternative method, eg a b-rep representation of a domain
with an arbitrarily complex shape. Cells could then be specified using a constrained Delaunay tetrahe-
dralisation of the domain (using predefined rules for the addition of Steiner points). The order of the
cells could be specified based on the lexicographical order of the vertices of each tetrahedron. Finally,
the values of each tetrahedral cell are then encoded linearly as in a grid.

While the previous example is perfectly possible, it is worth noting that exhaustive enumeration schemes
are well-liked largely because of their simplicity, which means that simpler representations are usually
preferred. Using a complex representation where the geometry is not trivial to compute on the fly (eg
a CDT) thus defeats many of the advantages of the exhaustive enumeration approach.

Most examples that are found in practice are thus relatively minor variations of voxel grids. For in-
stance, cells can have varying sizes according to their place in the grid (eg when more details are
desired in a particular region), the domains of grids can be stretched in some directions (such that the
domain is oblique), or the cells can be of different shapes (eg octahedra).

However, among the variations, sparse voxel models are worth special consideration. These represen-
tations opt to encode only the voxels containing something (rather than all voxels in the domain). In
order to do so, they usually specify simple objects consisting of: (i) a voxel position, eg using integer
coordinates for its position along each axis, and (ii) the voxel’s variables. While this is undoubtedly
more space-intensive per voxel than the standard encode-all approach, it works well for 3D models
consist of largely empty space, which occurs frequently in 3D city models and where the objects we
want to represent do not fit neatly into a box-shaped domain.

It is worth pointing out that most variations of voxel models can be processed with basically the same
methods as standard voxel grids.

3 of 10

GEO1004.2020 Lesson 3.1

2 Hierarchical subdivision models

In addition to exhaustive enumeration, there are also related data models where the structure is not en-
tirely predefined, but it is instead defined hierarchically using space-partitioning trees. The root of the
tree thus refers to a predefined space that will be subdivided, which corresponds to the entirety of the
space that is represented in an exhaustive enumeration model. Each node then specifies a subdivision
of the space defined by its parent node, and nodes (usually but not necessarily at the leaf level) are then
labelled to specify the object(s) or value(s) present in the space represented by it.

Since different branches of a tree do not need to have the same depth, hierarchical subdivision models
can have different resolutions in different parts of the model, and can thus adapt to the shape of the
objects being represented. This allows them to act as more compact alternatives to exhaustive enumer-
ation models in certain cases, usually where there are large objects that occupy many adjoining cells.
Note however that the tree structure of a hierarchical representation can occupy a significant amount
of space.

Hierarchical subdivisions are also a good way to encode the sparse models described in the previous
section, where large areas of empty space will be efficiently represented by leaf nodes that are generally
close to the root of the tree.

The most common structures used by hierarchical subdivision models are:

octrees subdivide space evenly along the x, y and z axes into eight equal-size octants. They are analo-
gous to quadtrees in 2D, which subdivide space evenly along the x and y axes into four equal-size
quadrants.

bintrees are similar to octrees, but they subdivide space in halves along only one axis per node, then
switching to a different axis for the next level of the tree, eg x, then y, then z, then x again, etc.

k-d trees are similar to bintrees, but they subdivide space using an arbitrary plane per node, which
can be defined by a single coordinate included in the node.

3 Voxelisation

The process through which other data models are converted into voxels is called voxelisation. It is
analogous to rasterisation in 2D. In most cases, the data being voxelised consists of vector objects,
either as a point cloud or a b-rep mesh. We will thus explain a method to voxelise 0D, 1D, 2D and 3D
vector objects. In principle, it can be applied to arbitrary curves and surfaces, but in most instances
they will be line segments (or polylines), as well as triangular and polygonal meshes.

3.1 Connectivity

When rasterising a curve in 2D, different algorithms aim to obtain a pixellated curve that is connected
according to either 4-connectivity or 8-connectivity (Figure 2). These are as follows:

4-connectivity means that pixels are connected to their four horizontally and vertically adjacent neigh-
bours.

8-connectivity means that pixels are connected their four 4-connected neighbours and to their four
diagonally incident neighbours.

In 3D, the equivalent concepts are 6-connectivity, 18-connectivity and 26-connectivity. These are as
follows:

6-connectivity thus means that voxels are connected to their six adjacent neighbours (ie on their left,
right, front, back, bottom and top).

4 of 10

GEO1004.2020 Lesson 3.1

Figure 2: Rasterising a line to achieve 4-connectivity (left) and 8-connectivity (right). The algorithm
uses line targets (orange) that are intersected with the curve.

18-connectivity means that voxels are connected to their six 6-connected neighbours and to their
twelve incident neighbours that touch them diagonally along an edge (ie top left, top right, top
front, top back, bottom left, bottom right, bottom front, bottom back, front left, front right, back
left and back right).

26-connectivity means that voxels are connected to their eighteen 18-connected neighbours and to
their eight incident neighbours that touch them diagonally along a vertex (ie top front left, top
front right, top back left, top back right, bottom front left, bottom front right, bottom back left and
bottom back right).

An alternative way to think about these connectivities is that they are defined based on the dimension-
ality of the common boundary of the pixels or voxels. 6-connectivity means that two neighbouring
voxels have a common 2D face. 18-connectivity means that they have at least a common 1D edge
(which covers having a common 2D face). 26-connectivity means that they have at least a common 0D
vertex (which covers having a common 1D edge or 2D face).

18-connectivity is an interesting concept that shows that there is a consistent logic for every dimension,
but it is not really used in practice. We will thus not discuss it further.

3.2 Intersections with targets (2D)

In the example from Figure 2, the pixellated curve is obtained by calculating intersections between the
original 1D curve and a set of targets that are 1D line segments. For 4-connectivity, the targets consist
of the four line segments that bound every pixel. For 8-connectivity, the targets are line segments that
bisect the pixel horizontally and vertically and their midpoints. The intersections with the targets give
us a set of points, and the pixels in which these points are tell us the pixels that are part of the pixellated
curve. When a point lies on an edge between two pixels or a vertex between four pixels, we consider
that all of the pixels are part of the curve.

In order to understand the logic of the targets, it is important to consider two aspects: (i) where the
intersections will lie and (ii) whether they will detect lines when they do not cross the midpoint of a
pixel. For 4-connectivity, the targets simply detect when a line exits the pixel through the left, right,
bottom or top edges on the boundary of the pixel. Since all intersections will be between pixels, the 2 or
4 pixels incident to the points will be part of the pixellated curve. For 8-connectivity, the targets detect
when they pass through the middle of the pixel either vertically or horizontally, which happens in the
interior of the pixel. Crucially, note that they might do not detect when a line cuts through a corner of
the pixel without crossing its middle vertically or horizontally.

Having covered the rasterisation of a 1D curve, let us discuss the two other cases: rasterising 0D points
and 2D areas. Since vector points are not connected, they do not need to be connected when rasterised
either. Since areas are always connected, they should also be connected when rasterised. Connectivity
is thus not an issue, which makes their rasterisation simpler.

An important observation for this method is that we used 1D targets to rasterise a 1D curve. In order
to rasterise a set of 0D points, we would use intersections with 2D targets, of which the optimal choice
would consist of the whole area of each 2D pixel. In order to rasterise a set of 2D areas, we would use
intersections with 0D targets, of which the obvious choice is the midpoint of a pixel (although others

5 of 10

GEO1004.2020 Lesson 3.1

are possible). It is possible to see a duality property here: in order to rasterise i-dimensional objects, we
use (2 − i)-dimensional targets.

3.3 Intersections with targets (3D)

At this point, we should point out that the method described in the previous section is not the absolute
fastest or the most common to rasterise objects in 2D. However, it is a method with good performance
with a logic that works perfectly in 3D, which is the reason why we will now explain how it works for
voxelisation.

Let us start backwards, with the equivalent duality property for voxelisation, which states that we can
use (3 − i)-dimensional targets to voxelise i-dimensional objects. Using this formula directly, we can
discuss the most obvious cases first: voxelising 0D points and 3D volumes, in which connectivity also
does not matter.

In order to voxelise 0D points (eg a point cloud), we can thus simply use 3D targets that consist of the
whole voxel (Figure 3). That is, we can compute for each point which voxel it is in, or for each voxel
the points that are in it. This is a trivial operation using ranges of x, y and z coordinates.

Similar to the previous case, in order to voxelise 3D volumes, we can use a 0D target with the midpoint
of the voxel. The exact form of this operation depends on the input data. For instance, if we have tetra-
hedra as input, it would be a point in tetrahedron operation, which could be done using barycentric
coordinates.

Now, let us discuss the more challenging cases: 1D and 2D objects. As with 1D curves in rasterisation,
connectivity is important for these, so we will give targets that can be used in order to achieve 6-
connectivity and 26-connectivity for each.

In order to voxelise 1D curves with 6-connectivity (Figure 4), we could detect when these pass through
the top, bottom, left, right, front or back faces of the voxel using 2D targets (Figure 5a). For 26-
connectivity, we could detect when these pass through the middle of the voxel using three bisecting
faces (Figure 5b).

Now, in order to voxelise 2D surfaces (Figure 6) with 6-connectivity, we can use 1D targets that detect
when we pass through any of the 12 edges on the boundary of the voxel (Figure 7a). For 26-connectivity,
we can use 1D targets that detect when we pass through the middle of the voxel (Figure 7b).

4 Exercises

1. Can you devise a formula to compare the space occupied by:

a) encoding all voxels in a grid linearly

b) using a sparse encoding with individual voxels

c) using a sparse encoding with an octree

2. Can you think of cases where the rasterisation targets for 1D lines do not work? Hint: think of
short curves.

3. What kind of connectivity is used in the example of Figure 4?

6 of 10

GEO1004.2020 Lesson 3.1

(a)

(b)

Figure 3: A point cloud (a) before and (b) after voxelisation. AHN data from Rotterdam.

7 of 10

GEO1004.2020 Lesson 3.1

(a)

(b)

Figure 4: A set of lines (a) before and (b) after voxelisation. OpenStreetMap data from Istanbul.

(a) (b)

Figure 5: Intersection targets (blue) for 1D curves for (a) 6-connectivity and (b) 26-connectivity.

8 of 10

GEO1004.2020 Lesson 3.1

Figure 6: Voxelising a surface

(a) (b)

Figure 7: Intersection targets (black lines) for 2D surfaces for (a) 6-connectivity and (b) 26-connectivity.

9 of 10

GEO1004.2020 Lesson 3.1

5 Notes and comments

Voxels are widely used in areas other than geographic information. For instance, both medical magnetic
resonance (MRI) and computer tomography (CT) scans produce voxel models. Physical simulations
also use voxels since many calculations are easy to do using regular grid structures, eg finite-element
analysis. Games sometimes use voxels as well, both for calculations and to render graphics. It is
worth noting that many of the techniques developed in these fields are just as applicable to geographic
information as well.

4D grids using 3D+time are also sometimes used, both in geographic information and elsewhere. Some
of the earliest papers to mention this are: Mason et al. (1994), who implemented a system using a 4D
grid of ocean temperatures with support for interpolation and generalisation operations, and Bernard
et al. (1998), who implemented a 4D grid of atmospheric variables (eg temperature, wind or pollution),
which can be used for simulations.

A common use of the representations covered here, especially voxel grids and octrees, is spatial index-
ing. Cells can thus be used to store other kinds of data, eg ids of objects, memory addresses with data,
or a subset of a point cloud.

The original paper describing quadtrees is Finkel and Bentley (1974), whereas that for octrees is Meagher
(1980). Bintrees (Samet and Tamminen, 1985) are an alternative that split dimensions alternately rather
than all at once. If you are curious about more types of trees used in hierarhical subdivisions, have a
look at the section titled ‘Spatial data partitioning trees’ in this Wikipedia template: https://en.wik
ipedia.org/wiki/Template:CS trees.

The voxelisation algorithm covered here is described by Laine (2013), although it might be easier to
understand the implementation described in Nourian et al. (2016). Alternative targets to the ones de-
scribed in this lesson are shown in both papers.

References & further reading

Bernard L, Schmidt B, and Streit U (1998). AtmoGIS — integration of atmospheric models and GIS.
In Poiker T and Chrisman N, editors, Proceedings of the 8th International Symposium on Spatial Data
Handling.

Finkel R and Bentley J (1974). Quad trees: A data structure for retrieval on composite keys. Acta
Informatica, 4(1):1–9.

Laine S (2013). A topological approach to voxelization. Computer Graphics Forum, 32(4):77–86.

Mason NC, O’Conaill MA, and Bell SBM (1994). Handling four-dimensional geo-referenced data in
environmental GIS. International Journal of Geographical Information Systems, 8(2):191–215.

Meagher D (1980). Octree encoding: a new technique for the representation, manipulation and display
of arbitrary 3-d objects by computer. Technical report, Rensselaer Polytechnic Institute.

Nourian P, Gonçalves R, Zlatanova S, Arroyo Ohori K, and Vo AV (2016). Voxelization algorithms for
geospatial applications: Computational methods for voxelating spatial datasets of 3D city models
containing 3D surface, curve and point data models. MethodsX, 3:69–86. doi: http://dx.doi.org/10.
1016/j.mex.2016.01.001. ISSN: 2215-0161.

Samet H and Tamminen M (1985). Bintrees, CSG trees, and time. In Cole P, Heilman R, and Barsky BA,
editors, SIGGRAPH ’85, volume 19, pages 121–130. ACM.

10 of 10

https://en.wikipedia.org/wiki/Template:CS_trees
https://en.wikipedia.org/wiki/Template:CS_trees

	Exhaustive enumeration models
	Hierarchical subdivision models
	Voxelisation
	Connectivity
	Intersections with targets (2D)
	Intersections with targets (3D)

	Exercises
	Notes and comments

