GEQO1004.2020 Lesson 1.2

Boundary representation

Lesson 1.2*

Contents
(I What is boundary representation?| 2
[2_ Objects with holes| 3
3 Non-manifolds 3
|4 Topological concepts| 5
b__Data structures for meshes 6
5.1 Triangle-based structures|. L o 6
5.2 Edge-based structures| 8
5.3 Incidence graphs| 8
6 Exercises 9
[f__Notes and comments| 10

In the first lesson of the course, we discussed how 3D modelling is done through a series of abstractions
of the real world. One of the chief reasons to do so is to decrease the complexity of what needs to be
modelled at each step, with the aim to successively break complex problems into simpler problems
until they can be (more easily) solved.

Boundary representation works using this principle. Rather than modelling a 3D object through a volu-
metric representation, it instead models the object implicitly by representing the 2D surface that bounds
it (Figure[T). In this way, it is possible to use one of the many data structures that are used to represent
2D meshes, which are significantly simpler than the data structures used to directly represent arbitrary
volumes.

However, it is very important to note that not all 3D objects can be represented using boundary rep-
resentation with most common 2D mesh data structures without issues. The main culprits are non-
manifold objects, which have properties that make representing them ambiguous, as well as objects
with holes, which need to be stored using certain techniques. External data structures might also be
needed to keep track of disconnected set of objects, since it might not be possible to have access to them
otherwise.

“@®® Ken Arroyo Ohori. This work is licensed under a Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/)

(last update: February 5, 2021)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

GEQO1004.2020 Lesson 1.2

Figure 1: A cube can be represented implicitly based on the six square faces that bound it.

i

X5, Y5)

(x()/ yO)

P1

(4, Y4)

(x3,Y3)
(a) (b)

P2

Figure 2: Boundary representation as applied to: (a) 1D line segments represented implicitly through
their two bounding points, and (b) a polygon represented by implying that it is bounded by a set of
line segments, which are themselves bounded by consecutive pairs of points in a sequence of points
(plus the last and the first).

1 What is boundary representation?

Boundary representation, also known as b-rep or surface modelling, is a method that involves represent-
ing an n-dimensional object through its (n — 1)-dimensional boundary. Most of the time this term
is used in the context of 3D modelling, where the aim is to represent a 3D object implicitly through
its 2D boundary. That being said, boundary representation is also common in 2D as well, where we
sometimes represent polygons based on the line segments that bound them, and it is the main method
used in 1D, where most of the time we represent line segments based on the two points that bound
them (Figure[2a)—as opposed to representing them based on something like a line equation. Boundary
representation can thus be used several times when representing a single 3D model: to represent a 3D
volume as a set of 2D surfaces, each 2D surface as a set of 1D line segments or curves, and each 1D
line segment as a pair of 0D points—or often 2D polygonal surfaces directly as sequences of 0D points
(Figure2D).

Boundary representation works because of what is known in 2D as the Jordan curve theorem, which
states that a closed curve separates the plane into two parts: an interior surface and an exferior surface.
In practical terms, this means that if you draw a closed curve on a sheet of paper, the curve separates
the sheet into two parts—an interior one that is bounded on the outside by the curve, and an exterior
one that is bounded on the outside by the edges of the sheet (ie its outer boundary) and on the inside
by the curve (ie as an inner boundary). In higher dimensions, this principle is known as the Jordan-

2 of|£|

GEQO1004.2020 Lesson 1.2

(a) (b) (©

Figure 3: Two different techniques to handle holes in (a) a volume with 2D faces with holes: (b) splitting
the volume into two parts and (c) using a bridge edge.

Brouwer theorem, which in 3D says that a closed surface separates 3D space into two parts: an interior
volume and an exterior volume.

For our purposes, what the above theorems mean is that if we have a comprehensive method to repre-
sent a 2D surface, we can also use it to implicitly represent many 3D volumes with minimal modifica-
tions. The specifics of these modifications depend on the data structure that we are using, but it often
is as simple as adding an extra coordinate for each point.

2 Objects with holes

As hinted in the last paragraph, there are however some 3D volumes that are tricky to store using
boundary representation. The most obvious ones are objects with 3D holes (ie cavities), since just
like the paper sheet example described previously, they are bounded by one outer surface and possibly
several inner surfaces (one per cavity). Less obviously, objects with 2D faces with holes can have exactly
the same problem with certain data structures (FigureBa), since a surface can be bounded by an outer
ring and possibly multiple inner rings.

Both of these cases are problematic because the structures representing holes can end up separated from
the rest of the data structure, resulting in a disconnected graph. In other words, it might be impossible to
navigate from the outer boundary of an object to its inner boundaries and vice versa.

While holes can cause problems when modelling objects using boundary representation, these are rel-
atively easy to solve. The three most common approaches are: (i) splitting volumes into multiple parts
in a manner that the 2D or 3D holes lie between different objects (Figure [3b), then somehow semanti-
cally marking that the parts belong to the same object (eg by using the same attribute id); (ii) storing a
list of holes for each object as a sort of attribute, from which they can then be accessed; and (iii) using
one bridge edge per hole, which are special edges that join each inner boundary to the outer boundary
(Figure Bd). The end result of the latter approach is that objects are only bounded by a single outer
boundary, which wraps around the original outer boundary and all of the former inner boundaries.
Bridge edges might also be marked semantically as such, although it is possible to tell that an edge is a
bridge edge because it is surrounded on all sides by the same 2D /3D object.

3 Non-manifolds

In addition to the above mentioned objects with holes, the other kind of objects that are tricky to store
using boundary representation are non-manifolds. However, in order to precisely describe what these
are, we need to introduce some concepts from topology, which will allow us to describe them in terms
of topological characteristics.

Mathematically, a homeomorphism is a continuous function that also has a continuous inverse. This is a
sort of equivalence relation (=) in topology, and so it can be used to tell that two objects are topologi-
cally equivalent or homeomorphic. In informal terms, applying a homeomorphism is like continuously

3ol

GEO1004.2020 Lesson 1.2

(a) (b)

Figure 4: A typical joke about topology says that (a) a coffee mug and (b) a donut are homeomorphic.

(a) (b) (0)

Figure 5: (a) The 1D boundary around a polygon is a non-1-manifold because the space around a vertex
(highlighted in a red circle) is not homeomorphic to a line. (b) & (c) However, the polygon can still
be represented using a loop of oriented edges by created a duplicate vertex at that location (shown
as two half disks), but there are two ways in which this can be done. Note that these are not equally
desirable as (c) results in a disconnected structure (just like a hole).

deforming an object (without making holes in it or glueing different parts of it), and if an object can
be transformed to another through this process, they are said to be homeomorphic (Figure[d). Homeo-
morphisms work because they preserve all topological properties, which means that they can be used
to relate different objects to simpler ones that have known properties (eg Euclidean 2D space or a
sphere).

A manifold is a shape that is homeomorphic to the Euclidean space of a certain dimension, ie a point in
0D, a line in 1D, a plane in 2D or 3D space in 3D. An intuitive way to think about this is that a manifold
locally resembles Euclidean space, even if globally it does not. For example, a line and a circle are
both 1-manifolds, while a plane, a sphere and a torus are all 2-manifolds. Meanwhile, non-manifolds
are shapes where you can find at least one point where this condition is not true (Figure pajand [6). In
geomatics, when people refer to a non-manifold, they are usually referring to a non-2-manifold.

Based on these definitions, we can now better describe exactly what 3D objects can be stored using
boundary representation without problems: those that are bounded by exactly one 2-manifold surface.
The logic behind this is that 2D space is by definition a 2-manifold surface, which means that we are
able to store objects that are bounded by a surface that is homeomorphic to it. An intuitive way to think
about this is to consider a counterexample in terms of the Jordan curve theorem: if we draw a closed
loop that crosses itself, which is clearly a non-manifold, we will end up with more than one interior
part (or an ambiguous situation). This line of thought also gives us an alternative way to think of why

Foll]

GEQO1004.2020 Lesson 1.2

Figure 6: The 2D surface around this volume is a non-2-manifold because it is not homeomorphic to a
plane.

o8

Figure 7: Surfaces with: (a) genus 1, (b) genus 2, (c) genus 3. From Wikimedia Commons.

objects with 3D holes are a problem, which is because they are bounded by more than one surface.

While the obvious solution might be to disallow non-manifold objects, they are common in practice
however, and so we need to have methods to deal with them, even if these methods might introduce
additional complexity to boundary representation. For this, there are two approaches that are typi-
cally used: (i) splitting non-manifold objects into multiple manifold parts, then marking the parts as
belonging to the same object using semantics; and (ii) creating duplicate elements at the same location
(Figure pb|and [pd). In 2D this usually involves duplicate vertices, whereas in 3D this might involve
duplicate edges as well.

4 Topological concepts

In addition to holes and manifolds, there are other topological concepts that are commonly used when
characterising objects in 3D modelling. These are not directly related to the present lesson, but we will
make a small tangent to introduce them here.

The genus of a surface is the maximum number of closed loop cuts we can make in it without causing it
to become disconnected (Figure[7). Note the ‘maximum’ here, since it is always possible to select loops
that cause a surface to become disconnected. Intuitively, it is the number of ‘handles’ it has. A sphere
thus has genus 0, whereas a torus (eg the donut and coffee mug) have genus 1 because we can cut the
handle of the object and still have a connected surface.

S ofl]

GEQO1004.2020 Lesson 1.2

Figure 8: A Mobius strip is a one-sided surface, equivalent to glueing a paper strip with a single 180°
twist, and it is the most typical example of a non-orientable surface. Note however that this is only
true when it is modelled without thickness. From Wikimedia Commons.

A surface is said to be orientable when it is possible to define a normal vector at every point of the
surface in a consistent manner, ie without sudden reversals of the vector direction when moving long
the surface. Since real-world objects are always orientable (Figure[8), this might seem like a non-issue
in practice. However, real-world objects are always volumetric—no matter how thin they are—but
when these are modelled, they are often modelled as surfaces (ie without thickness), which makes it
possible to have unorientable surfaces.

5 Data structures for meshes

Moving back to the storage of 3D models using boundary representation, there are a large number
of data structures that can be used for this purpose. However, there are three broad approaches: (i)
data structures using triangles as base elements; (ii) data structures that use edges or half-edges as
base elements; and (iii) data structures that have polygons, edges and vertices as base elements. We
will show one or two characteristic examples for each approach, with the understanding that there are
many possible variations of each of them.

5.1 Triangle-based structures

The first typical approach relies on a surface being triangulated, ie being split entirely into triangles,
so that you have a triangle mesh. This is often desirable because in a triangle mesh, each triangle is
known to have (up to) three adjacent triangles and three incident vertices, whereas in a polygon it can
be any number. Because of this, a triangle-based data structures (Figure [9) can use fixed-length data
structures to store all their elements (eg arrays), which are more efficient.

Since there are specific elements for triangles and vertices, triangle-based data structures make it easy
to store attributes both for triangles and for vertices. For instance, it is possible to mark all the triangles
belonging to a certain surface semantically through the use of a common attribute, which could be a
pointer or id linking to a surface element. Such a surface could contain attributes common to all the
triangles that represent it.

Surfaces with holes are generally not a problem for triangle-based data structures. When these are
triangulated (using a constrained triangulation), holes become connected to the rest of the structure.
If a hole of a surface contains a different surface, the triangles adjacent to it can simply link to the
triangles representing it. If it does not, the triangles can have a special link or value corresponding to
empty space (eg null). The same applies for triangles on the edge of the surface

In addition to the basic approach, there are variations that use more compact representations of triangle-
based structures, usually by joining multiple adjacent triangles that are arranged in a certain way. Ex-
amples of these are triangle strips (Figure[I0) and triangle fans/stars (triangles that are all incident to a
certain vertex).

6 of|£|

GEQO1004.2020 Lesson 1.2

./\(.X(),xl,...)

(@) (b) (©

Figure 9: A triangle-based data structure consists of a set of triangles as base elements, each of which
has links to (a) its three adjacent triangles (as pointers or ids). Then, the usual approach is to also
have links to (b) its three incident vertices (as pointers or ids), which can stored as separate elements
with (c) their coordinates. Alternatively, it is also possible to store the vertex coordinates directly in
the triangles, but this means that the coordinates are stored many times—once in every triangle that
is incident to it.

Figure 10: A triangle strip is easily defined as a list of vertices (a,b,c,d,e f,g). Every triangle is
formed by three consecutive vertices in the list.

7 oflﬂ]

GEQO1004.2020 Lesson 1.2

e[3].Next

Figure 11: In the quad-edge data structure, an edge stores a quad, which contains four records pointing
to other quads corresponding to the previous and next oriented edges for the polygons on both of its
sides.

5.2 Edge-based structures

When we want to allow for polygons in a surface, the most common approach is to use data structures
where the base elements are either edges or half-edges. Let us look at one example of each.

The quad-edge data structure uses edges as base elements. Each edge then stores a quad (Figure|11)) and
links to one or both of its incident vertices. In a common easy implementation, the edge is first given
an arbitrary orientation. In this manner, there are vertices at the start and end of the edge, which can be
used as names to access them, and there are thus left and right polygons, which means that the quad
links can thus be called something like left-previous, left-next, right-previous and right-next.

While this approach works fine, it is important to note that there will not be a consistent orientation
between adjacent edges. Vertices can thus have multiple edges pointing away from them and toward
them. As an example of the consequences of this, getting all the vertices of a polygon is a bit awkward,
since for each iteration where we arrive at an edge, we need to check the orientation of the edge and
program a different logic for each orientation.

The alternative is to split each edge into two linked half-edges with opposite orientations. This ap-
proach is called the half-edge data structure, of which are many variations in practice, such as the doubly
connected edge list (DCEL). In the DCEL (Figure [12), half-edges are the base element, but there are
also elements for vertices and faces. Vertices store their coordinates and a link to one face-edge starting
from it, whereas faces store a link to a half-edge on its outer boundary. If holes are present, faces also
typically store one link to a half-edge on each of its inner boundaries. Note however that this means
that a variable-length data structure (eg a linked list) will need to be used. Vertices, half-edges and
faces can each also contain fields for attributes. Storing attributes for edges will thus result in duplicate
information (or edge elements that are linked to both half-edges).

In general, half-edge data structures are more verbose than edge-based data structures. However, they
make navigating through the structure much easier. For instance, obtaining all the vertices of a polygon
in order in the DCEL simply involves following the next link of a half-edge.

5.3 Incidence graphs

The last approach that is common in practice is the incidence graph. It is a simple data structure where
i-dimensional elements are linked to the (i — 1)-dimensional elements that bound it (Figure [13). This
approach makes it easy to store attributes for faces, edges and vertices without redundancy. However,

8 oflE]

GEQO1004.2020 Lesson 1.2

o ©
(@) (b)

Figure 12: (a) Three adjacent polygons are represented using (b) the DCEL. In the DCEL, a half-edge e
is linked to two vertices (called the origin and the destination) and to the face that it is incident to, and
is linked to its next half-edge (on the same face) and its twin half-edge (on the adjacent face).

(x0,%1,--)

% Tom

(a) (b) (o)

Figure 13: In the incidence graph, (a) faces have a list with links to the edges that bound them, (b) edges
have links to the two vertices that bound them, and (c) vertices contain their coordinates.

it needs variable-length data structures to store the edges that bound each face. Because of this, it is
commonly used where it is not a problem (eg in text files), but it is avoided when efficiency is more
important and where variable-length fields are a problem (eg in databases).

6 Exercises

1. Why can we represent a 2D polygon directly as a sequence of 0D points (ie skipping line segments
entirely) but we cannot do the same in 3D?

2. Exactly where is the surface of Figure[lnot homeomorphic to a plane?

3. Splitting objects is a simple solution to deal with both holes and non-manifolds. However, in
terms of semantics it is often not desirable. Why is that?

4. How does the vertex order for a triangle fan or star look like?

5. How can you obtain all the edges incident to a vertex in order (ie as you rotate around the vertex)
using the quad-edge data structure? How about for the DCEL? Which is easier?

9 oflE]

GEQO1004.2020 Lesson 1.2

7 Notes and comments

The original place where the Jordan curve theorem is introduced is Jordan| (1887), which is an old
French textbook on calculus and differential equations. The generalisation to higher dimensions was
apparently done by |Lebesgue| (1911) and [Brouwer| (1911), although this is somewhat contentious (van,
Dalen, 2013, Ch. 5).

We mentioned R-trees and k-d trees as examples of spatial indices. The details of each are not very
relevant here, but it is good to know that they have tree structures with links to each object in the leaves.
If you want to get more familiar with them, you can skim the papers where they were introduced,
Guttman)| (1984) and [Bentley|(1975), or simply check the Wikipedia article for an R-tree: https://en.w
ikipedia.org/wiki/R-tree,

If you want to see how the coffee mug and the donut from Figure 4| are homeomorphic, watch this
video: https://www.youtube. com/watch?v=9N1qYr6-TpA.

A nice description of a star-based data structure is available in [Blandford et al| (2005), or in 3D in
Ledoux and Meijers| (2013).

The quad-edge data structure was originally described in |Guibas and Stolfi| (1985). The first data struc-
ture of that type is likely the winged-edge data structure [Baumgart (1975).

As for half-edge data structure, the first example is likely the 2D combinational map (Edmonds, [1960).
The DCEL is originally described in Muller and Preparatal (1978), but you can find nicer descriptions
in|Worboys and Duckham)| (2004) or de Berg et al.| (2008).

References & further reading

Baumgart BG (1975). A polyhedron representation for computer vision. In AFIPS '75 Proceedings of the
May 19-22, 1975, national computer conference and exposition, pages 589-596. ACM.

Bentley JL (1975). Multidimensional binary search trees used for associative searching. Communications
of the ACM, 18(9):509-517.

Blandford DK, Blelloch GE, Cardoze DE, and Kadow C (2005). Compact representations of simplicial
meshes in two and three dimensions. International Journal of Computational Geometry and Applications,
15(1):3-24.

Brouwer L (1911). Beweis des Jordanschen Satzes fiir den n-dimensionalen Raum. Mathematische An-
nalen, 71:314-319.

de Berg M, van Kreveld M, Overmars M, and Schwarzkopf O (2008). Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, 3rd edition.

Edmonds J (1960). A combinatorial representation of polyhedral surfaces. Notices of the American Math-
ematical Society, 7.

Guibas LJ and Stolfi J (1985). Primitives for the manipulation of general subdivisions and the compu-
tation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74-123.

Guttman A (1984). R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984
ACM SIGMOD International Conference on Management of Data, pages 47-57.

Jordan MC (1887). Cours d’Analyse. Gauthier-Villars.

Lebesgue M (1911). Sur l'invariance du nombre de dimensions d’un espace et sur le theoréme de M.
Jordan relatif aux varieté fermées. Comptes rendus de I’ Académie des Sciences, 152:841-844.

Ledoux H and Meijers M (2013). A star-based data structure to store efficiently 3D topography in a
database. Geo-spatial Information Science, 16(4):256-266.

10 oflg]

https://en.wikipedia.org/wiki/R-tree
https://en.wikipedia.org/wiki/R-tree
https://www.youtube.com/watch?v=9NlqYr6-TpA

GEQO1004.2020 Lesson 1.2

Muller DE and Preparata FP (1978). Finding the intersection of two convex polyhedra. Theoretical
Computer Science, 7:217-236.

van Dalen D (2013). L.E.]. Brouwer — Topologist, Intuitionist, Philosopher. Springer Science+Business
Media.

Worboys M and Duckham M (2004). GIS: A Computational Perspective. CRC Press, 2nd edition.

11 oflﬂ]

	What is boundary representation?
	Objects with holes
	Non-manifolds
	Topological concepts
	Data structures for meshes
	Triangle-based structures
	Edge-based structures
	Incidence graphs

	Exercises
	Notes and comments

