Universidad Distrital Francisco José de Caldas

Facultad de Ingeniería Maestría en Ciencias de la Información y las Comunicaciones

> Carrera 7 No. 40B - 53 - Piso 4, 111311 Bogotá http://www.udistrital.edu.co/web/mcic

Tesis de Maestría

Evaluación de técnicas digitales para identificar cultivos de café a partir de imágenes multiespectrales

> Camilo Alexander León Sánchez Código: 20062295010

camiloleon@icloud.com

Supervisada por: Dr.-Ing. Iván Lizarazo © 2015

Índice general

ĺn	lice de figuras	Ш
ĺn	lice de tablas	V
A٤	radecimientos	VI
Αc	rónimos	1
GI	osario	2
1.	Introducción 1.1. Planteamiento y Justificación del trabajo	4 4 5 5 6 6
2.	Marco Teórico y Estado del Arte 2.1. Marco Teórico	7 7 8 11 12
_	2.3.1. Escenario Internacional	14 15
3.	Datos y Métodos 3.1. Zona de estudio 3.2. Datos 3.3. Herramientas Tecnológicas 3.3.1. Erdas Imagine 3.3.2. eCognition 3.3.3. QGIS 3.4. Métodos 3.4.1. Metodología propuesta durante la investigación	17 18 19 19 19 19 19
4.	Resultados 4.1. Zona de estudio Inicialmente propuesta	25 25 28 29

Bil	bliogr	rafía	64
6.	Con	clusiones	62
	5.4.	estudio	59 60
	5.3.	en objetos y pixeles, para la identificación de cultivos de café Establecer si la exactitud de la identificación de cultivos de café mejora si, en lugar de emplear escenas IKONOS, se utilizan imágenes Ultracam de la misma zona de	57
	5.2.	imágen y otra basada en pixeles, para la identificación de cultivos de café usando imágenes multiespectrales de alta resolución espacial (IKONOS)	56
5.		usión Usar dos técnicas digitales de análisis de imágenes, una basada en objetos de	56
	4.7.	Comparación de los resultados obtenidos en la identificación de cultivos de café sobre un área en común entre imágenes de los dos sensores	54
	4.6.	$4.5.2. \ \ Paradigma \ orientado \ a \ objetos \ de \ imágen \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	48 53
	4.5.	imagen UltraCamX	39 42 43
	4.4.	Imagen IKONOS	34 35 37
	4.3.	Presentación de los resultados obtenidos por las técnicas de clasificación para la	

Índice de figuras

2.1. 2.2.	Ejemplo de clasificación basada en pixeles. fuente: [1]
	mentación de la vía (derecha). fuente: [2]
2.3.	Uso de la segmentación Mean-Shift sobre una imagen. fuente: [2]
2.4.	Ejemplo del uso de aproximación jerárquica en la exploración de patrones. fuente:
	Traducido de [3]
2.5.	Relación de la reflexión con el concepto de textura. Fuente [4]
3.1.	Área de estudio ubicada en el Departamento de Cundinamarca
3.2.	Metodología propuesta
3.3.	Diagrama de actividades para la clasificación no supervisada
3.4.	Diagrama de actividades para la clasificación supervisada
3.5.	Diagrama de actividades para la clasificación orientada a objetos
4.1.	Diferencias de la localizaci'on entre imagenes
4.2.	Distribución de los puntos de control en el proceso de Georeferenciación para una
4.0	región de $51km^2$
4.3.	Distribución de los puntos de control en el proceso de Georeferenciación para una
4.4	región de $15km^2$
4.4.	Ejemplos de discrepancias entre la Información en SICA y las imágenes aéreas
4.5.	Àrea de Estudio en el Departamento del Tolima
4.6.	Indice de Vegetación Normalizado NDVI para la área de estudio cubierta por la escena del sensor IKONOS
4.7.	Componentes Principal 1 para la área de estudio cubierta por la escena del sensor
1.1.	IKONOS
4.8.	Varios resultados de análisis de texturas
4.9.	Capa de textura para una ventana de 13x13 de la banda azul y el algoritmo MED
	para la área de estudio cubierta por la escena del sensor IKONOS
4.10.	Estructura de los datos de entrada para el análisis
	. Ejemplos de cada clase y la leyenda de colores extraídas de la imagen IKONOS . 33
	. Área Urbana, incluyendo cultivos de café según el SICA
4.13.	. Zona norte, incluyendo cultivos de café según el SICA $\dots \dots \dots$
4.14.	. Zona sur, incluyendo cultivos de café según el SICA $\dots \dots \dots$
4.15	. Zona sur la cual incluye una gran regiún cubierta por nubes
	. Resultados obtenidos en el área urbana
4.17	. Resultados obtenidos en la zona norte de la imagen, incluyendo cultivos de café
	según el SICA
4.18.	. Resultados obtenidos en la zona sur de la imagen, incluyendo cultivos de café
	según el SICA

EVALUACIÓN DE TÉCNICAS DIGITALES PARA IDENTIFICAR CULTIVOS DE CAFÉ A PARTIR DE IMÁGENES MULTIESPECTRALES Índice de figuras

4.19. Resultados obtenidos sobre la zona sur de la imagen la cual incluye una gran	
región cubierta por nubes	36
4.20. Resultados obtenidos en el área urbana	37
4.21. Resultados obtenidos en la zona norte de la imagen, incluyendo cultivos de café	
según el SICA	37
4.22. Resultados obtenidos en la zona sur de la imagen, incluyendo cultivos de café	
según el SICA	38
4.23. Resultados obtenidos sobre la zona sur de la imagen la cual incluye una gran	
regiún cubierta por nubes	38
4.24. Resultados obtenidos sobre la zona Noroccidental de la imagen UltraCamX	39
4.25. Resultados obtenidos sobre la zona Nororiental de la imagen UltraCamX	40
4.26. Resultados obtenidos sobre la zona Central de la imagen UltraCamX	41
4.27. Resultados obtenidos sobre la zona Suroccidental de la imagen UltraCamX	42
4.28. Resultado de la clasificació de café para las tres técnicas digitales	43
4.29. Refinado del resultado de la clasificació de café para las tres técnicas digitales	43
4.30. Cultivos de café seleccionados para la comparación entre los resultados obtenidos	
de la mejor técnica digital para cada sensor	54
5.1. Áreas con cultivos de café dentro de la zona de estudio	59
5.2. Ejemplos de sombrío en el cultivo de café	61

Índice de tablas

2.1. 2.2.	Ejemplo de una matrix de confusión de tres clases. Fuente: [5]	11 16
3.1. 3.2. 3.3.	Información básica del programa IKONOS. Fuente: [7]	18 18 24
4.1. 4.2. 4.3.	Matriz de Confusión para la clasificación no supervisada basada en Pixeles Matriz de Confusión para la clasificación supervisada basada en Pixeles Matriz de Confusión para la generalización de la clasificación no supervisada basada en Pixeles	44 44
4.4.	sada en Pixeles	45 46
4.5. 4.6.	Matriz de Confusión de la clasificación supervisada para la imagen $UltraCamX$. Matriz de Confusión para el modelo 1 de la clasificación orientada a objetos de	47
4.7.	imágen	48 49
4.8.	imágen	50
4.9.	Matriz de Confusión para la generalización del modelo 2 de la clasificación orientada a objetos de imágen	50
	Matriz de Confusión para el modelo 1 de la clasificación orientada a objetos de imágen	51
	Matriz de Confusión para el modelo 2 de la clasificación orientada a objetos de imágen	52
	Comparación de los resultados obtenidos por las técnicas digitales para la imagen IKONOS	53
	Comparación de los resultados obtenidos por las técnicas digitales para la imagen UltraCamX	53
4.14.	Comparación de los resultados obtenidos por las dos técnicas digitales para la identificación de cultivos de café sobre un área de traslape entre imágenes de ambos sensores	55

Agradecimientos

" Todo tiene su momento oportuno; hay un tiempo para todo lo que se hace bajo el cielo" $$_{\rm Eclesiast\acute{e}s~3:1}$$

A mis padres Pedro Nel y Gladys María quienes no dejaron de persuadirme para que finalizara esta maestría después de todos estos años. A mi hermanos Laura, Diego y mi cuñada Carolina por esas noches de trasnocho dándome ese apoyo moral tantas veces necesario. A mis sobrinas María José y Salomé por esas visitas a expresarme su amor mientras trabajaba en este documento y Terry por sus ladridos, miradas y babas cada vez que vino a visitarme.

Al Dr.-Ing. Iván Alberto Lizarazo por su invaluable paciencia y sabiduría, por los tantos consejos recibidos a lo largo de todos estos años y en cada una de nuestras conversaciones, por escucharme en cada una de mis dudas y momentos difíciles, pero sobretodo, por estar ahí, en la oficina 101 del OMA listo para analizar los avances de esta investigación.

Al Gerente Técnico de la Federación Nacional de Cafeteros *Ing. Carlos Armando Uribe*, y al coordinador nacional del sistema de información cafetera SICA *Ing. Juan Pablo Becerra* por haberme permitido usar los datos del la institución así como por el apoyo y la comprensión brindado durante el tiempo de desarrollo de la investigación.

A mis amigos, por todo este tiempo apoyándome, por sus mensajes, palabras, apoyo por sus observaciones y opiniones durante esta tesis. A ti Luz Adriana, por brindarme tu amor, paciencia y comprensión a cada instante.

To you Efraín, you are always on my mind.

Acrónimos

Cenicafé: Centro Nacional de Investigaciones del Café

DEM: Modelo Digital de Elevación en inglés.

DN: Valor Digital en inglés.

EG: Exactitud Global.

EP: Exactitud del Productor.

EU: Exactitud del Usuario.

ERR_ RAND: Error Aleatorio.

FNC: Federación Nacional de Cafeteros de Colombia.

HMSC: Clasificador jerárquico multiescala.

LiDAR: Light Detection And Ranging

OBIA: Analisis Basado en Objetos de Imagen en inglés.

PCA: Análisis de Componentes Prncipales.

RBF: Funciones de Base Radial.

RMS: Error Medio Cuadrático en inglés.

SICA: Sistema de Información Cafetera.

SVM: Maquinas de Soporte Vectorial en inglés.

Glosario

- **Affine Transformation:** Cualquier tipo de transformación que puede ser expresada por una multiplicación de matrices seguida por una adición vectorial [2].
- Arvenses Agresivas: Las arvenses son todas aquellas plantas que conviven con los cultivos, en este caso son malezas, las cuales limitan el crecimiento y producción de los cultivos debido a su competencia por la luz, nutrimientos y espacio [11].
- Cluster: Son regiones de segmentación en los cuales se agrupan pixeles con las propiedades iguales (posición, color) [12].
- **EG:** Exactitud Global. En la evaluación de la exactitud por medio de la matriz de confusión, la exactitud global estima el porcentaje de pixeles que fueron clasificados de manera correcta [13]
- **EP:** Exactitud del Productor. En la evaluación de la exactitud por medio de la matriz de confusión, se refiere a la probabilidad que una clase en terreno sea clasificada como tal. [13,14].
- **EU:** Exactitud del Usuario. En la evaluación de la exactitud por medio de la matriz de confusión, indica la propabilidad que un pixel etiquetado en una clase en el mapa realmente pertenezca a esa clase [13,14].
- **ERR_ RAND:** error aleatorio en metros (m) para el eje horizontal en cada punto de la imagen (-1.0 si es desconocido) [15].
- **Extensionista:** Término con el cual se conoce a los funcionarios de la federación Nacional de Cafeteros que visitan a los caficultores en las fincas. Se les llama así por hacer parte del servício de extensión.
- **HMSC:** Hierarchical Multi-Scale Classifier en inglés para clasificador Jerárquico multi-escala. Técnica en la cual se identifican regiones de interés a bajas resoluciones espaciales y posteriormente sólo se emplea la información que se encuentra en escalas más altas, donde un alto nivel de detalle se encuentra disponible [16].
- Coeficiente Kappa: Es empleado para medir la confiabilidad de un clasificador. Mide la diferencia entre la exactitud lograda en la clasificación y la posibilidad de lograr lo mismo con un clasificador aleatorio [17,18]

$$K = \frac{P(A) - P(E)}{1 - P(E)} \tag{0.1}$$

Donde: P(A) Es la proporción de veces que el clasificador es correcto, P(E) es la proporción de veces que se espera que de lograr lo mismo con un clasificador aleatorio.

- **K-means:** Este clasificador encuentra grupos estadisticamente similares en el espacio multiespectral. El algoritmo inicia por una localización aleatoria de los clusters k en el espacio espectral, siendo cada pixel en la imagen de entrada asignado al cluster más cercano y el centro de la ubicación del cluster se mueve hacia el promedio de los valores de la clase [19,20]
- **Matriz de Confusión:** Esta matriz resume el desempeño de una clasificación o clasificador con respecto a algunos datos de prueba [5].
- **Máxima Verosimilitud:** Maximum Likelihood en inglés. Este algoritmo estima los datos estadísticos de la población como la media y la varianza son estimados para maximizar la probabilidad o verosimilitud a partir de una funsión de densidad probabilísticamente definida dentro del espacio de estudio [21].
- Mayority Filter: Filtro Mayoritario, este filtro permite calcular para cada pixel el valor o nombre de la clase predominante (que ocurre más seguido) para cada pixel de entrada y sus vecinos. [22].
- Pan-Sharpering: Es el acrónimo para "Panchromatic sharpering" proceso en el cual se emplea una imagen pancromatica de alta resolución para ajustar una imagen multiespectral incrementando su resolución espacial [23].
- **Percepción Remota Multiespectral:** Está definido como la colecció de energía reflejada, emitida o retrodifundida de un objeto o área de interés en multiples bandas del espectro electromagnético [24].
- **RBF:** Radial Basis Function en inglés para Funciones de Base Radial. Es un tipo de red neuronal que emplea valores reales que dependen únicamente de la distancia de los puntos hacia un punto origen [25].
- **Resolución Espacial:** Se refiere al tamaño más pequeño de un objeto que puede ser identificado por el sensor [1, 26].
- **Resolución Espectral:** Describe la capacidad de un sensor para definir invervalos de longitud de onda finos del espectro electromagnético [1, 26].
- **Sensor Próximo:** Sensor ubicado a pocos centrímetros del objeto a medir, empleado para detectar y medir la intensidad de la radiación electromagnética reflectada [27].
- **Sensor Remoto:** Sensor ubicado a una gran distancia empleado para detectar y medir la intensidad de la radiación electromagnética reflectada reflectada por los objetos observados [27].
- **SVM:** Support Vector Machine en inglés para Maquinas de Soporte Vectorial. Son un grupo de métodos supervisados de aprendizaje que puede ser aplicados a clasificaciones o regresiones [28]
- Vigor Vegetativo: Es un indicador del desarrollo de la biomasa vegetativa producida, y en el caso de cultivos está estrechamente relacionado con la producción y calidad del fruto. Permite establecer patrones de desarrollo, predicciones de cosechas y costes de producción [29]

1 Introducción

El uso de la percepción remota y de diferentes técnicas de teledetección en labores como reconocimiento e identificación de cultivos o identificación de su estado vegetativo ha sido una práctica común [30] y cada vez se incrementa más su uso debido entre otros factores a la posibilidad de abarcar grandes extensiones de terreno de manera simultánea y de traer grandes beneficios en países en desarrollo en la transmisión de esta clase de conocimientos [31]. Estas no son labores sencillas puesto existen factores externos al cultivo como lo pueden ser la nubosidad de la zona o el tipo de sensor empleado y de factores intrínsecos como lo son la densidad y tipo de siembra, ubicación (región plana, montañosa, etc.) y el tipo (monocultivo, sucesivo, asociado, etc.) [32].

Varios estudios se han desarrollado en el área de la percepción remota para la identificación de cultivos, algunos han empleado técnicas de minería de datos [33], otros presentan los requerimientos en resolución espacial para la identificación de cultivos empleando sensores remótos ópticos [34], sin embargo esta propuesta considera imágenes de sensores con baja resolución espacial (MODIS,Landsat); otros autores proponen el uso de diferentes técnicas de procesamiento y la combinación de datos, por ejemplo LiDAR, para lograr la identificación de cultivos [35–37].

El hecho de contar con un banco de imágenes multiespectrales así como de un sistema de información geográfica presentan un escenario óptimo para el análisis de imágenes de diversas plataformas y estudiar el potencial de diferentes técnicas y algoritmos en la identificación de cultivos. En esta investigación, se busca identificar cultivos de café empleando imágenes multiespectrales de diferentes sensores como soporte a la validación de datos del sistema de información cafetera (SICA) de la Federación Nacional de Cafeteros de Colombia (FNC).

Esta investigación se desarrolla dentro de la línea de investigación Análisis de imágenes orientado a la caracterización y detección de cambios de objetos y fenómenos geográficos y dentro de la investigación macro Caracterización de la vegetación usando sensores próximos y remotos liderada por el profesor Dr.-Ing. Ivan Lizarazo del Núcleo de Investigación de Datos Espaciales (NIDE) de la Universidad Distrital Francisco José de Caldas.

1.1. Planteamiento y Justificación del trabajo

El cultivo de café es un componente histórico de la economía colombiana que representa el 4% del total de las exportaciones del país [38] y vincula a más de 563,000 familias [39,40] generando 800,000 trabajos directos y cerca de 1'600,000 empleos indirectos [41]. En 1927 los líderes cafeteros del país crearon la **Federación Nacional de Cafeteros -FNC-** como una organización gremial privada con el objetivo principal de defender el ingreso de los productores a través de diferentes áreas como lo son la investigación a cargo del CEntro Nacional de Investigaciones del Café (CENICAFÉ) o asistencia técnica por medio del servicio de extensión [42]. La FNC realizó

hace más de 20 años la encuesta nacional cafetera con el propósito de mejorar sus capacidades de pronóstico de la producción de café, la cual es el estándar para mantener actualizado el **Sistema de Información Cafetera -SICA-** [43]. Este sistema provee los datos estructurales básicos y la información estratégica necesaria para el planteamiento, desarrollo y análisis de las políticas cafeteras enfocadas al apoyo de la caficultura y por consiguiente a los campesinos de Colombia.

Los datos almacenados en el SICA son actualizados por el servicio de extensión de la FNC, incluyendo el componente espacial siendo una instancia los linderos de finca y lote ó, en el escenario en que el lote sea muy pequeño, las coordenadas (2D) de su centroide. Esta actualización se realiza en campo por el personal especializado (extensionista) empleando en la actualidad imágenes digitales de alta resolución como información base (sección 3.2) para el dibujo de cultivos y fincas, parcializando su uso al no considerar algunas de las herramientas que puede ofrecer la teledetección (sección 2.1).

El proceso de visitas a finca es complejo y requiere de mucho tiempo, debido a que la gran mayoría de las fincas cafeteras son menores a 2 hectáreas de extensión en inclusive tan sólo el 5% de ellas tienen un tamaño superior a 5 hectáreas [40], de igual manera las grandes distancias que en ocasiones deben recorrer los extensionistas (trayectos de varias horas sobre vías de difícil acceso) por lo cual, los trabajos de actualización o recolección de datos para todos los caficultores del país puede llevar años para llevarse a cabo e inclusive en el momento de finalizarse ya estarían desactualizados, ejemplo de esto es la Encuesta Nacional Cafetera llevada a cabo entre 1993 y 1997 [44]. De igual forma los extensionistas son los ojos de la FNC sin que exista un mecanismo por parte de la oficina central que permita verificar o validar la información almacenada en el SICA.

Esta investigación estudia el uso de técnicas digitales para la identificación de cultivos de café a partir de imágenes multiespectrales. Una metodología que ofrezca resultados óptimos empleando como insumo básico las imágenes de alta resolución que existen en el banco de imágenes de la FNC permitiría no solo la validación de los datos almacenados en el SICA sino también brindaría apoyo en los procesos de actualización que se llevan a cabo en la FNC.

1.2. Pregunta de Investigación, Hipótesis y Objetivos

1.2.1. Pregunta de investigación

Múltiples estudios se han llevado a cabo sobre el cultivo de café [6,45–47]; sin embargo estos se han realizado empleando datos de sensores remotos de baja resolución espacial (MODIS, Landsat) con lo cual el mejor tamaño posible por pixel en terreno ha sido de 30m, una resolución muy baja ya que como se expresó en el planteamiento y justificación del trabajo (sección 1.1) las fincas cafeteras son pequeñas e inclusive el área promedio de una finca cafetera es de 6,24 destinando tan tan sólo el 24 % del terreno al cultivo de café [44].

Otro componente que se debe considerar en el área de la percepción remota es la técnica empleada para el procesamiento de las imagenes. En la sección 2.1 se presentan los paradigmas empleados en esta investigación, orientado a objetos de imagen y basado en pixeles, no solo es

importante la calidad de los datos de entrada (resolución espacial, espectral, etc.), sino el manejo que se le de a los mismos, puesto que la selección de la técnica incorrecta conlleva a un análisis deficiente de la información y por consiguiente una baja calidad en los resultados que se obtengan.

Esta investigación buscar responder la siguiente pregunta de investigación: ¿Cuál es la mejor técnica digital para la identificación de cultivos de café a partir de imágenes multiespectrales de alta resolución?

1.2.2. Hipótesis

En los estudios previos para identificar cultivos de café (sección 2.3), se han empleado sensores de baja resolución espacial (> 30m) como fuente de información (ejemplo sensores MODIS, Landsadt). A partir de la pregunta planteada en la sección anterior (1.2.1) se considera que el uso de imágenes multiespectrales de alta resolución espacial generadas por sensores remotos mejoran la exactitud de los resultados obtenidos durante el proceso de clasificación de las imágenes.

El empleo de diferentes técnicas de clasificación en una imagen permite comparar la pertinencia de cada una de estas a la hora de identificar cultivos de café frente a las características propias de la caficultura en el área de estudio. Se espera que el uso de diferentes paradigmas de clasificación (sección 2.3) sobre una zona de estudio arroje diferentes resultados.

En la actualidad, la FNC cuenta con imágenes multiespectrales de diferentes sensores (sección 3.2), se espera que el empleo de imágenes de diferentes fuentes sobre una misma área de estudio permita establecer la influencia de la resolución espacial en la exactitud temática. Esta hipótesis que debe ser contrastada con los resultados que se obtengan del sensor con menor resolución espacial.

1.2.3. Objetivos

El objetivo general de esta tesis es la evaluación de diferentes técnicas digitales como herramientas para la identificación de cultivos de café a partir de imágenes multiespectrales. Para tal efecto, se definen los siguientes objetivos específicos:

- Usar dos técnicas digitales de análisis de imágenes, una basada en objetos de imágen y otra basada en pixeles, para la identificación de cultivos de café usando imágenes multiespectrales de alta resolución espacial (IKONOS).
- 2. Comparar los resultados obtenidos a partir de las dos técnicas digitales, basadas en objetos y pixeles, para la identificación de cultivos de café.
- 3. Establecer si la exactitud de la identificación de cultivos de café mejora si, en lugar de emplear escenas IKONOS, se utilizan imágenes UltraCamX de la misma zona de estudio.

2 Marco Teórico y Estado del Arte

En la sección 2.1 se presentan algunos conceptos básicos sobre técnicas digitales que se consideran relevantes para el desarrollo de esta investigación y que son usados durante la fase de implementación. Posteriormente en la sección 2.3 se presentan investigaciones en las que se emplearon diferentes técnicas de teledetección para la identificación y monitoreo de cultivos agricolas [6,46], las cuales son tenidas en cuenta debido a la pertinencia de los temas con respecto a los objetivo de esta investigación.

2.1. Marco Teórico

La clasificación digital de imágenes es el proceso de asignar pixeles a clases temáticas que representan de estereotipos de interés en la zona de estudio [1]. Sin importar la metodología empleada, en el mejor de los casos esta será una tarea semi-automática. En la medida en que el área de estudio sea más grande, el potencial de beneficios por el uso de técnicas semiautomáticas será mayor.

2.1.1. Clasificación basada en pixeles

De acuerdo con [1], en este paradigma de clasificación, los pixeles son tratados como unidades individuales compuestas de valores en diferentes bandas espectrales. A partir de la comparación de pixeles con aquellos que sean conocidos (se conoce el área que abarcan o la información que contienen), es posible asignar grupos de pixeles similares a clases definidas como relevantes para el usuario. Existen dos tipos de procedimientos de clasificación que se emplean bajo este paradigma:

Clasificación Supervisada Es necesario reconocer antes de la clasificación la identidad y ubicación de ciertas regiones representativas de las clases temáticas presentes sobre la cobertura en terreno [48], a partir de la toma de muestras en pixeles con identidad conocida (áreas de entrenamiento), se clasifican los pixeles con indentidad desconocida [49]. Estas áreas deben tipificar la propiedades espectrales de las clases temáticas que representan y de igual forma deben ser homogeneas con respecto a la clase a ser clasificada [1].

Clasificación No Supervisada Puede ser definido como la identificación de grupos naturales o estructuras dentro de los datos multiespectrales [1]. Los pixeles son organizados en clases espectrales empleando un algoritmo de clustering a pesar que estos grupos no siempre sean equivalentes a las clases en la cobertura del suelo [14]. Posteriormente a la clasificación de los datos, los clusters identificados son asociados con los tipos de cobertura del suelos por parte del analista [48].

Estas técnicas pasadas en pixeles analizan las propiedades espectrales de cada pixel dentro del área de interés, sin tener en consideración la información espacial o contextual relacionada al pixel de interes [50].

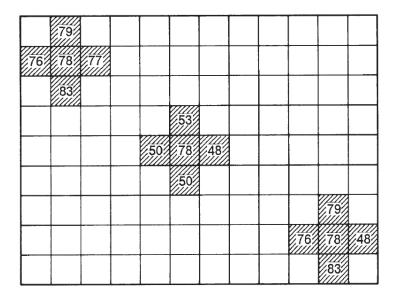


Figura 2.1: Ejemplo de clasificación basada en pixeles. fuente: [1]

La figura 2.1 presenta un ejemplo de una clasificación basada en pixeles [1], la figura cuenta con tres pixeles con un valor digital (DN en inglés) del mismo valor 78; para este paradigma, el clasificador evaluará los pixeles vecinos. El pixel ubicado en la parte superior izquierda puede ser agrupado en la misma clase junto con los otros pixeles. El pixel central es diferente a sus vecinos, sin embargo debido a su localización junto a otros pixeles más oscuros, será clasificado junto en esa dichos pixeles. El pixel ubicado en la parte inferior derecha el pixel central será clasificado de acuerdo a los valores de sus vecinos que se encuentran arriba, a la izquierda y abajo del pixel.

2.1.2. Clasificación orientada a objetos de imágen

Consiste en la identificación de objetos en imagenes, es decir, segmentos que son espectralmente homogeneos, con una textura, color y tonos similares [51–53]. Este paradigma considera los objetos de imagen como las unidades básicas de clasificacion, dentro de sus ventajas sobre el paradigma basado en pixeles esta el uso de diferentes caracteristicas como el comportamiento espectral, textura y geometría de los objetos [37,50] entre otros. Los métodos orientados a objetos suelen ser más efectivos que aquellos basados en pixeles en el momento de clasificar imágenes de alta resolución espacial ya que en la medida en que se incrementa la resolución espacial aumenta la variabilidad del contenido espectral entre pixeles que pertenecen a una misma clase [54,55].

La clasificación basada en objetos de imagen consiste en dos etapas, la segmentación de imágenes y la clasificación de objetos de imagen [54], siendo esta última un proceso en el cual a cada segmento de un objeto es etiquetado ha una clase correspondiente empleando el algoritmo de clasificación apropiado [37,51,56,57].

Segmentación de imágenes

De acuerdo con [51,58-60] la función de la segmentacion de imágenes es producir un conjunto de segmentos n (polígonos) que no se traslapa en áreas destacadas de la imagen. Un algoritmo de segmentación se realiza con el propósito de dividir la imagen en regiones (a) relativamente homogeneas y (b) en grupos de pixeles semanticamente significativos [51,61]. Algunos de los algoritmos de segmentación son:

Watershed Según [2], este algoritmo convierte líneas en una imagen en "montañas" y regiones uniformes en "valles" que son empleados para segmentar la imagen. Primero toma el gradiente de intensidad de la imagen, formando los valles, donde no hay textura y forma las montañas o rangos (bordes) donde se encuentren líneas dominantes en la imágen. La figura 2.2 presenta un ejemplo del uso del algoritmo watershed para la identificación de una vía.

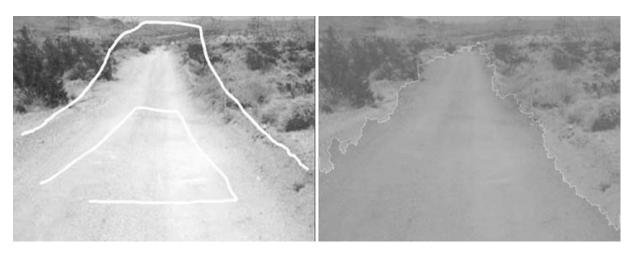


Figura 2.2: Uso del algoritmo watershed para la identificación de una vía: se agregaron unos marcadores en la imagen original (izquierda) el resultado del algoritmo es la sementación de la vía (derecha). fuente: [2]

Mean-shift Con base a [12] Este método de análisis cluster cada miembro de una nube de datos formará parte de un procedimiento interactivo en el cual se cambiaran un punto de convergencia dentro del mismo cluster o región de segmentación. Dentro de est método se fusionarán pixeles cercanos que se encuentren dentro de un radio delimitado [2]. La figura 2.3 presenta el uso del algoritmo Mean-Shift para la segmentación de una imagen, con un radio espacial y espectral definidos, como resultado (derecha) las regiones similares tienen valores iguales por lo que pueden considerarse como super pixeles aumentando la velocidad de procesamiento considerablemente [2].

Figura 2.3: Uso de la segmentación Mean-Shift sobre una imagen. fuente: [2]

Multi-escala Técnica de segmentación que puede ser descrita como una técnica de agregación de regiones la cual inicia con cada pixel formando un objeto o region de la imagen. En cada paso un par de objetos de imagen es agregado a otro más grande, este proceso se basa en criterios de homogeneidad locales describiendo la similaridad a objetos de imagen adyacentes [62]. La figura 2.4, presenta de manera gráfica como el uso del algoritmo multi-escala se puede emplear para la determinación de elementos a diferentes escalas [3].

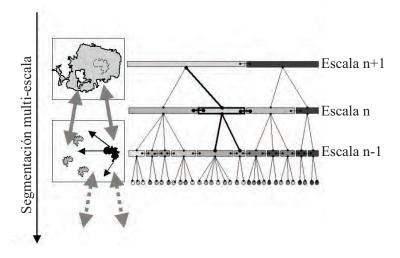


Figura 2.4: Ejemplo del uso de aproximación jerárquica en la exploración de patrones. fuente: Traducido de [3]

2.2. Evaluación de la exactitud

La evaluación de la exactitud en percepción remota es fundamental dentro del proceso de clasificación de imágenes,"...sin la evaluación de la exactitud la calidad del mapa o de los resultados obtenidos tendrán un menor valor para el usuario final" [14].

La evaluación de la exactitud para todas las técnicas empleadas en esta investigación es desarrollada por medio de la matriz de confusión error, la cual de acuerdo a [5], resume el rendimiento de un clasificador con respecto a algunos datos de prueba. Es una matriz bidimensional, indexada en una dimensión por la verdadera clase de un objeto y en el otro la clase que el clasificador asignó.

Tabla 2.1: Ejemplo de una matrix de confusión de tres clases. Fuente: [5]

		Clase		
		Asignada		
A B C				\mathbf{C}
Clase	A	10	2	1
Actual	В	0	6	1
	\mathbf{C}	0	3	8

La tabla 2.1 presenta que para la primera fila de los 13 objetos pertenecientes a la clase A y que de ellos 10 está correctamente clasificados como A, 2 fueron mal clasificados como B y 1 fue clasificado como C [5]. El resultado de la evaluación de la exactitud provee al usuario la Exactitud Global EG de la clasificación así como de cada una de sus clases, dicho porcentaje es estimado a partir de la siguiente formula [14]:

$$EG = \frac{N\acute{u}mero\ total\ de\ muestras\ correctas}{N\acute{u}mero\ total\ de\ muestras} \cdot 100\% \tag{2.1}$$

Adicionalmente a la estimación de la EG, es posible estimar la exactitud de la clasificación para cada una de las clases, sin embargo para este caso es posible emplear dos enfoques [13, 14], la exactitud del usuario EU es estimada dividiendo el número de pixeles correctamente clasificados en cada categoría por el número total de pixeles que fueron clasificados en esa categoría y la exactitud del productor EP que es estimada dividiendo el número de pixeles correctamente clasificados en una clase por el número total de pixeles derivados de los datos de referencia.

Empleando los datos de la tabla 2.1 la estimación de las exactitudes del usuario y del productor para la clase \mathbf{B} está dada por las siguientes ecuaciones:

$$EP = \frac{6}{11} = 54,54\% \tag{2.2}$$

$$EU = \frac{6}{7} = 85,72\% \tag{2.3}$$

Donde la ecuación 2.3 nos indica que se puede esperar que el 85,54% de los pixeles clasificados como B realmente lo son en terreno, mientras que sólo se clasificó el 54,54% de todos los pixeles de B fueron clasificados como tal (ecuación 2.2)

2 Marco Teórico y Estado del Arte

2.2.1. Procesamiento Inicial

Con el fin de mejorar la calidad de los datos de entrada para la clasificación se llevará a cabo un procesamiento previo en el cual se generarán capas de informacion adicionales, las cuales son presentadas a continuación:

Indice de Vegetación Normalizado - NDVI

Basandose en la medición de la respuesta espectral de las plantas, es posible estimar y evaluar el estado de la vegetación, siendo el Indice de Vegetación Normalizado uno de los más usados [63]. De acuerdo con [64], el NDVI (ecuación 2.4) se calcula a partir de mediciones de reflectancia en la porción del espectro electromagnético del rojo e infrarrojo cercano (NIR por sus sigla en Inglés)

$$NDVI = \frac{\rho_{NIR} - \rho_{Rojo}}{\rho_{NIR} + \rho_{Rojo}} \tag{2.4}$$

Donde ρ_{NIR} es la reflectancia obtenida para por el sensor en el infrarrojo cercano y ρ_{Rojo} es la reflectancia obtenida por el sensor en la porción del espectro visitble del color rojo [26]. El NDVI es empleado para la estimación del vigor vegetativo, el cual permite conocer determinadas condiciones físiologicas de las plantas [29,65].

Textura

La textura se refiere a la aparente rugosidad o suavidad de una región de una imagen [1]. De acuerdo con [4], es un patrón o forma de expresar la reflexión de objetos en terreno en el espacio espectral hacia un espacio bidimensional donde los objetos en terreno están distribuidos sobre un plano cartesiano como se presenta en la figura 2.5. Sin embargo, debido a la dificultad de medición e interpretación ha sido menos empleado en percepción remota comparado con análisis espectrales [66]. La clasificación y algoritmos de texturas son difierentes a los métodos estadisticos tradicionales debido a que estos se basan en las propiedades estadísticas de los pixeles vecinos [67].

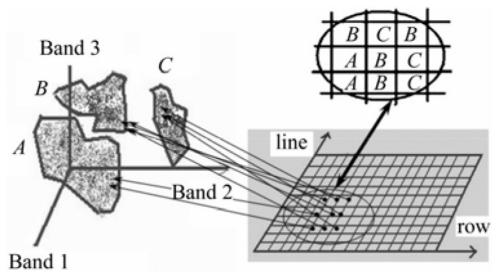


Figura 2.5: Relación de la reflexión con el concepto de textura. Fuente [4]

Los cuatro algoritmos empleados para el análisis de texturas en esta investigación son [67,68]:

Distancia Euclidiana Media MED

$$MED = \frac{\sum \left[\sum_{\lambda} (x_{c\lambda} - x_{ij\lambda})^2 \right]^{\frac{1}{2}}}{n-1}$$
 (2.5)

Donde $x_{ij\lambda}$ es la reflactancia para la banda espectral λ el pixel (i,j) de una imagen multiespectral. $x_{c\lambda}$ es la reflactancia para la banda espectral λ del pixel central de la ventana y n el número de pixeles en la ventana.

Varianza

$$Varianza = \frac{\sum (x_{ij} - M)^2}{n - 1}$$
(2.6)

Donde x_{ij} es la reflactancia para el pixel (i, j), n el número de pixeles en la ventana y M la media de la ventana en movimiento.

Asimetría Aritmétrica

$$Asimetria = \frac{\left|\Sigma \left(x_{ij} - M^3\right)\right|}{\left(n - 1\right)\left(v\right)^{\frac{3}{2}}}$$
(2.7)

Donde x_{ij} es la reflactancia para el pixel (i, j), n el número de pixeles en la ventana, M la media de la ventana en movimiento y V la varianza

Kurtosis

$$Kurtosis = \frac{\sum (x_{ij} - M)^4}{(n-1)(v)^2}$$
(2.8)

Donde x_{ij} es la reflactancia para el pixel (i, j), n el número de pixeles en la ventana, M la media de la ventana en movimiento y V la varianza

Análisis de Componentes Principales - PCA

Existe una tendencia para conjuntos de datos multiespectrales en ser de alguna manera redundantes donde las bandas espectrales son adyacentes unas con otras en el rango del espectro electromagnético, considerándose que dichas bandas están correlacionadas, al tener valores digitales (DN en inglés) relativamente similares para algunos atributos) [31].

Con base a [69], el análisis de componentes principales es una transformación lineal que proyecta datos a un nuevo espacio orthogonal de la forma que los primeros componentes representarán las mayores varianzas en el conjunto de datos original, permitiendo de esta eliminar la correlación de los datos de la imagen a partir de la transformación de las distribuciones de los DN en conjuntos de nuevos ejes multiespaciales [31]. De igual forma, al momento de aplicarse sobre datos multiespectrales con pocas bandas, PCA es eficiente y por lo general produce resultados satistactorios en la extracción de características útiles [69].

2.3. Estado del Arte

2.3.1. Escenario Internacional

En 2012 se desarrolló la investigación (Multi-scale classification of remote sensing images) cuyo objetivo fue "... proponer un clasificador mejorado el cual está adaptado a segmentación multiescala" [46]. Allí se empleó el paradigma de potenciar los clasificadores, cuyo principio es la combinación de diferentes clasificadores débiles (cada uno de ellos enfocado para un nivel de segmentación y un descriptor regional) para construir un clasificador global eficiente.

Este proyecto se llevó a cabo en el estado de Minas Gerais en Brasil con el fin de identificar plantaciones de café empleando imágenes de sensores remotos. Uno de los problemas que se presentó en su desarrollo es la ubicación de los cultivos, ya que estos crecen en regiones montañosas lo cual genera dificultades para el desarrollo de una clasificación a causa de las sombras y distorsiones sobre la información espectral de la imágen. De igual forma el cultivo seleccionado (café) también presenta sus propias complicaciones al no ser un cultivo de temporadas específicas, razón por la cual en una región puede presentarse plantaciones de café de diferentes edades lo que afecta los patrones espectrales [46].

Dos aproximaciones se propusieron en este proyecto para el análisis multi-escala de las imágenes [46]: un clasificador multi-escalar (MSC) y un clasificador jerárquico multi-escala (HMSC). El clasificador MSC está basado en el algoritmo Adaboost el cual construye un clasificador fuerte a partir de un conjunto de clasificadores débiles. El otro (HSMC) que también se basa en el impulso de clasificadores débiles, se basa en una estrategia secuencial de entrenamiento, de acuerdo de la segmentación jeráquica de escalas.

En esta investigación se propusieron dos configuraciones para el aprendizaje de los clasificadores débiles : SVM y RBF . En el primer caso, para un objeto específico F a una escala determinada λ y dado un subconjunto de etiquetas \hat{Y}_{λ} la estrategia es encontrar los mejores hiperplanos lineales de separación entre regiones de las imágenes de acuerdo a sus clases (café y no café) tratando

de máximizar el margen de separación de los datos. Los vectores de soporte y coeficientes de decisión $(\alpha_i, i = 1, ..., N)$ obtenidos en la etapa de entrenamiento permiten definir al clasificador SVM a través de la ecuación 2.9 [46] como:

$$SVM_{(F,\lambda)}(R) = \operatorname{signo}\left(\sum_{i}^{N} y_{i}\alpha_{i} (f_{R} \cdot f_{i}) + b\right)$$
(2.9)

El segundo clasificador está basado en las distancias previstas por los descriptores usados. Consiste seleccionar una región objetivo que mejor separa otras regiones entre dos clases basados en un descriptor de imagen específico \hat{D} a una escala específica λ . Siendo R_t una región objetivo e y sus clases (1 para relevante y -1 para irrelevantes). La clase de la región R, dada por un clasificador débil (R_t, \hat{D}, λ) es definida en la ecuación 2.10 [46] como:

$$RBF_{(R_t,D,\lambda)}(R) = \begin{cases} y & si \ d(R_t,R) \le l \\ -y & o \end{cases}$$
 (2.10)

Donde $d(R_t, R)$ es la distancia entre la región objetivo R_t y la región R empleando el descriptor \hat{D} y l como el valor del intervalo.

2.3.2. Escenario Nacional

En 2007 se desarrolló una tesis de maestría en el uso de análisis de imágenes y SIG para el mapeo de café [6]. El propósito de esta investigación fue evaluar el potencial de combinar datos SIG e imágenes Landsat para identificar diversos cultivos de café, basándose en la segmentación de datos e imágenes para el análisis del paisaje. Su hipótesis principal indica que diferentes cultivos de café pueden ser mapeados usando la información espectral obtenida por imágenes Landsat y características topográficas derivadas de los Modelos Digitales de Elevación (DEM). También consideró en su hipótesis que la información adicional obtenida de la clasificación orientada a objetos conllevará a una mejor caracterización de diferentes cultivos de café en comparación con la clasificación basada en pixeles.

En esta investigación se empleó la metodología propuesta en [70] donde se sugiere que la composición de color infrarojo lejano $Banda~7~(2,09\mu m-2,35\mu m)$, verde $Banda~2~(0,52\mu m-0,60\mu m)$ e infrarojo medio $Banda~5~(1,55\mu m-1,75\mu m)$ identificará de manera precisa plantaciones de café y empleando el algoritmo de transformación "affine" para combinar las bandas (TM2) verde y (TM7) infrarojo lejano para identificar tres tipos de cultivos de café (sombra, semi-sombra sin sombra).

El área de estudio abarcó 240 fincas en los municipios de Oporapa, Palestina y Timaná en el Huila, en esta zona se realizó un levantamiento sobre 44 polígonos que información acerca de los cultivos de café (sistema de caficultura) y las condiciones de luminosidad [6]. Las fincas fueron seleccionadas basadas en el criterio que tuvieran un porcentaje de sombrío superior al 30 %. Los resultados de estas imágenes fueron evaluados con fotografías aéreas escala 1:40.000 de 1.996 adquiridas por la FNC las cuales fueron georeferenciadas usando el algoritmo polinomial de primer orden y puntos de control.

Dentro de las conclusiones de este proyecto, ambos tipos de clasificación (basado en pixeles

2 Marco Teórico y Estado del Arte

y orientado a objetos) arrojaron, en opinión de la autora de la investigación, resultados positivos que soportan la hipótesis que se pueden distinguir cultivos de café a partir de la información radiométrica y topográfica. Sin embargo, los resultados de las metodologías empleadas (Tabla 2.2) indican que los valores del índice kappa (κ) son bajos. De igual forma, cabe resaltar la baja resolución espacial de esta investigación (el objeto de menor tamaño es de 30mx30m)debido a que esta se basó en la propuesta metodológica presentada en [71], limitando la cobertura de lotes que tuvieran un tamaño superior a una hectárea (1ha).

Tabla 2.2: Comparación de resultados entre las metodologías empleadas. Fuente: [6]

Metodología	Exactitud en Total	κ	κ (por clase)	
Metodologia		en Total	Café	Otros
Basado en pixeles	71.89	0.66	0.38	0.39
Basado en Objetos	74.88	0.70	0.70	0.45

Las definiciones y conceptos presentados en esta sección, serán empleados como fundamento teórico para la fase de implementación de esta investigación. El marco teórico presenta los paradigmas de clasificación que serán empleados y el procesamiento inicial que se realiza sobre las imágenes antes ejecutar los clasificadores. En el estado del arte se presentan algunas investigaciones que se han desarrollado en percepción remota para la identificación de café, sin embargo estas fueron realizadas con datos de sensores remotos de baja resolución espacial.

3 Datos y Métodos

Todos los estudios mencionados anteriormente están relacionados a los modelos conceptuales que ayudaran al autor con el desarrollo de esta investigación. Sin embargo, se requiere que se lleve a cabo una implementación física de la investigación en la cual se busca dar respuesta a la pregunta de investigación (sección 1.2.1) a partir de la hipótesis planteada en la sección 1.2.2. En esta investigación se empleó las plataformas eCognition y Erdas Image para el procesamiento de las imágenes satelitales y fotografías aéreas adquiridas por la Federación Nacional de Cafeteros para su sistema de información cafetera (SICA).

3.1. Zona de estudio

La zona de estudio propuesta para la implementación de esta investigación se localiza en el occidente departamento de Cundinamarca (Figura 3.1) principalmente entre los municipios de La Mesa, Cachipay, Anolaima y Bituima (Circulo amarillo dentro de la imagen) ya que FNC cuenta con imágenes multiespectrales de los sensores IKONOS, UltraCamX y SPOT (sección 3.2) en esta zona. Sin embargo el área de estudio era susceptible de cambio de acuerdo con la prioridad requerida por la FNC durante la fase de implementación.

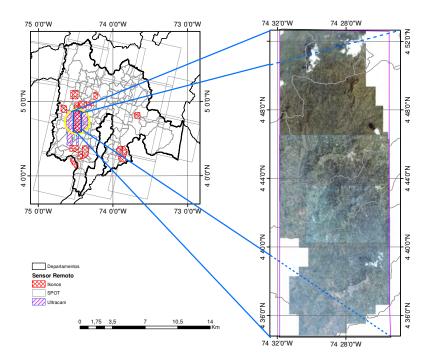


Figura 3.1: Área de estudio ubicada en el Departamento de Cundinamarca

El área de traslape entre las imágenes de los sensores IKONOS y UltraCamX (la descripción de estos sensores se encuentra en la sección 3.2) es de $217km^2$

3.2. Datos

En la actualidad, la federación Nacional de Cafeteros cuenta con imágenes satelitales y fotografías aéreas digitales de diferentes plataformas, siendo empleadas principalmente como información base la cual es utilizada por el servicio de extensión de la entidad como apoyo para cumplir sus labores en campo, siendo un ejemplo la delimitación de linderos de una finca o cultivo. La tablas 3.1 y 3.2 presentan los insumos de sensores remotos empleados en esta investigación.

Tabla 3.1: Información básica del programa IKONOS. Fuente: [7]

Resolución Espacial	Banda Espectral		Resolución Espectral
1-metros Blanco y Negro	ros Blanco y Negro Pancromática 526 - 929 nm		
	Azul	445 - 516 nm	8 Bits
4-metros multiespectral o 1-metro Color	Verde	506 - 595 nm	11 Bits
	Rojo	632 - 698 nm	
	Infrarojo Cercano	757 - 853 nm	

La imagen multiespectral IKONOS fue fusionada con la imagen pancromática usando el algoritmo Pan-Sharpering por lo cual la resolución espacial de la imagen resultante es de 1m en todas sus bandas espectrales. En el caso de la imagen del sensor UltraCamX, la resolución espacial está definida a partir de la altura de vuelo de la aeronave que lleva el sensor.

Tabla 3.2: Información básica del sensor UltraCamX. Fuente: [8–10]

Resolución Espacial	Banda Espectral		Resolución Espectral
	Pancromática	410 - 690 nm	
0.4m	Azul	410 - 540 nm	12 Bits
0,4m	Verde	480 - 630 nm	12 Dits
	Rojo	580 - 700 nm	
	Infrarojo Cercano	690 - 1000 nm	

3.3. Herramientas Tecnológicas

3.3.1. Erdas Imagine

Es una plataforma para el procesamiento y análisis de imágenes espaciales [68]. Ha sido empleado en proyectos de percepción remota para la agricultura [72–74], clasificación de imágenes de sensores remotos usando el paradigma basado en pixeles [14, 50, 61], análisis de texturas en terreno [66, 67, 75], y uso de NDVI para evaluación del estado vegetativo [76, 77].

3.3.2. eCognition

Es un paquete de software empleado para el análisis de imágenes orientado a objetos [78]. En esta investigación se empleó para la segmentación de las imágenes y en el desarrollo de los modelos y clasificación de imágenes para el paradigma OBIA. Este software ha permitido desarrollar investigaciones incluyendo clasificación de regiones, permitiendo la inclusión de datos de diferentes fuentes. [51,55,78,79]

3.3.3. QGIS

QGIS es un software para información Geográfica abierto bajo licencia de uso general público (GNU). Es un proyecto oficial del Open Source Geospatial Foundation (OSGeo) multiplataforma que soporta datos vector, raster y conexiones a bases de datos. Puede ser empleado para procesar imágenes satelitales o bases de datos disponibles para la investigación [80]. Así mismo será empleado para la visualización y comparación de resultados.

3.4. Métodos

3.4.1. Metodología propuesta durante la investigación

La figura 3.2 presenta la metodología empleada para la identificación de variedades de cultivos de café a partir de imágenes multiespectrales.

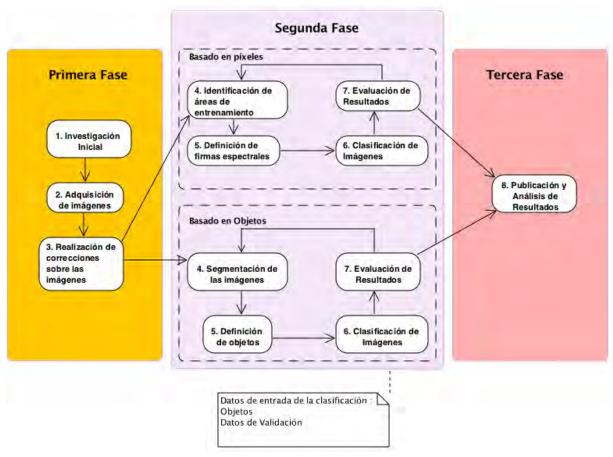


Figura 3.2: Metodología propuesta

El desarrollo de la investigación se divide en tres fases, la primera incluye procesos como elaboración del estado del arte de los temas que abarcan esta investigación, delimitación del área de estudio e insumos con los que se desarrollará este trabajo. La primera fase finaliza con la búsqueda de las imágenes originales del área de estudio dentro de los servicios de imágenes con que cuenta la FNC, en el caso de encontrar estos archivos se procederá a realizar correcciones sobre las imágenes. Si no es posible obtener las imágenes crudas se procederá a trabajar con los archivos disponibles en el servicio de imágenes.

La segunda fase de la investigación se divide en dos partes, ya que se emplearán técnicas basadas en pixeles y objetos. En las técnicas basadas por pixeles se emplearán el algoritmo K-means [19,20] para la clasificación no supervisada definiendo el número de clases que el clasificador identificará k y el algoritmo de Máxima Verosimilitud para la clasificación supervisada [21], en el cual se definen inicialmente las áreas de entrenamiento, posterior a esto se definen las clases y se condiciona el clasificador según las clases definidas. En las técnicas basadas por objetos procede a realizar la segmentación, la identificación de objetos, y la clasificación de las imágenes. Se considera que es una fase cíclica y dinámica puesto que, en cada instante se deben evaluar los resultados que

se obtengan debido a que el cambio de los parámetros con los que se usa una técnica conllevará a variaciones en los resultados obtenidos y en la medida que estos sean reajustados permitirán mejorar la calidad de los resultados finales.La última fase de la investigación consiste en el análisis final de los resultados obtenidos y en la publicación de resultados.

Con base en la figura 3.2, a continuación se describe la metodología empleada para la clasificación de las imágenes según cada técnica digital considerada dentro de esta investigación.

La figura 3.3 presenta la metodología empleada para la clasificación no supervisada.

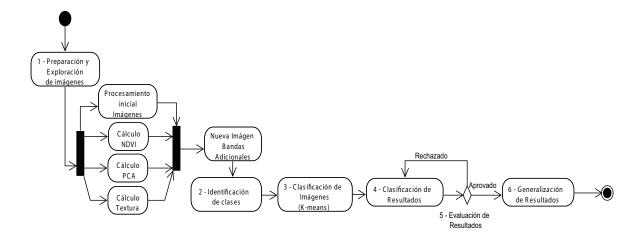


Figura 3.3: Diagrama de actividades para la clasificación no supervisada

En la primera etapa, la exploración del área de estudio implica un recorrido visual por toda la imagen de manera detallada, con el fin de identificar visualmente las clases que se encuentran en la imagen para el área de estudio y que serán determinadas en la segunda etapa. Una vez identificadas estas clases, se procede a realizar la clasificación de las imágenes empleando el algoritmo K-means asignando un valor de cluster k tres veces el número de clases identificadas en la exploración visual con el fin que el clasificador identifique aquellas clases que no fueron detectadas en el proceso anterior.

La cuarta etapa del proceso implica la reclasificación de los resultados obtenidos con el fin de reclasificarlos en las clases previamente establecidas para el proyecto y que son presentadas en la figura 4.11. La quinta etapa del proceso implica la evaluación de los resultados, en el caso que no sean positivos se debe volver a la etapa anterior realizando nuevamente el proceso de reclasificación de los resultados del clasificador. La sexta y ultima etapa es la generalización de resultados.

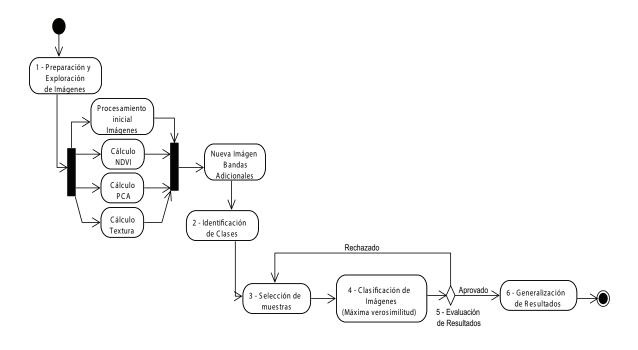


Figura 3.4: Diagrama de actividades para la clasificación supervisada

En el caso de la **clasificación supervisada** (figura 3.4), las primeras dos etapas del proceso son iguales a la clasificación no supervisada, en la tercera etapa se toman las muestras para cada una de las clases definidas, en la cuarta etapa se lleva a cabo la clasificación de las imágenes empleando empleando el algoritmo de Máxima Verosimilitud [21].

La quinta etapa del proceso corresponde a la evaluación de los resultados obtenidos por el clasificador, en el caso que los resultados no sean óptimos (con valores de evaluación de la exactitud bajos) se debe regresar a la selección del muestreo por clase con el fin de revisar las muestras seleccionadas y actualizarlas ya sea incluyendo nuevas regiones o reemplazando otras. La última etapa del proceso consiste en la generalización de resultados

La metodología propuesta para la clasificación orientada a objetos está dividida en 8 etapas (figura 3.5), la *Primera etapa* consiste en una exploración visual de las imágenes sobre el área de estudio, en la segunda etapa se lleva a cabo la segmentación de las imágenes empleando el algoritmo multiresolución¹, siendo usado el resultado de este proceso para la producción objetos de imagen primitivos como un primer paso para la clasificación de las imágenes [62], todas las bandas de la imagen tiene el mismo peso asignado para la segmentación, el parámetro de escala es de 40 con el fin que las regiones sean de menor tamaño a los cultivos de café, y los criterios

¹Este método es un proceso iterativo de optimización local el cual minimiza la heterogeneidad promedio de los segmentos generados, contiene componentes espectrales y espaciales, el primero es definido en los valores de las respuestas espectrales de los pixeles en el segmento y el segundo es basado en dos atributos de forma: suavidad y compactación [81]

de forma y compactación son de 0,1 y 0,5 respectivamente.

La tercera etapa corresponde a la creación de las clases, definiendo cuáles son los objetos que se desean clasificar empleando esta técnica digital. la cuarta etapa corresponde a la selección muestras para cada una de las clases que se desean identificar dentro del proceso de clasificación.

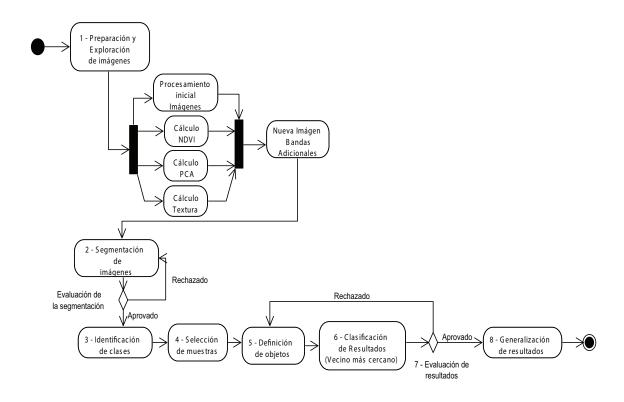


Figura 3.5: Diagrama de actividades para la clasificación orientada a objetos

La quinta etapa corresponde a la definición de objetos, en este paso se procede a definir los atributos que son tenidos en cuenta en el proceso de definición de los objetos, los cuales son presentados en la tabla 3.3:

Tabla 3.3: Parametros empleados para la definición de objetos de imagen

Modelo 1 Modelo 2

Mean: Banda NDVI Desviación Estándar: Banda NDVI Quantile: 5 % banda PC Ratio: Banda PC

Saturación: bandas (Red, Green, Blue) Relación con obj. vecinos: Borde con clase Café

Mean: Brightness Desviación Estándar: Banda NDVI Quantile: 30 % banda NIR

Textura: estimada x Dif. media: PC1

La ultimas etapas de la metodoloía sexta y séptima corresponden respectivamente a la clasificación y evaluación de los resultados obtenidos, en el caso en que estos no sean exitosos (comparándo los resultados obtenidos con respecto a la información de lotes de la base de datos del SICA), se debe volver a la cuarta etapa con el fin de primero revisar las áreas de entrenamiento y posteriormente modificar los atributos empleados en la clasificación de los objetos como lo son los parámetros propios de la segmentación y los atributos a partir de los cuales se define que es un objeto. La etapa octava corresponde a la generalización de los resultados obtenidos.

4 Resultados

En los capítulos anteriores, se ha discutido acerca de estudios relacionados a los modelos conceptuales empleados por el autor durante el desarrollo de esta investigación, de igual forma se presentaron los datos y métodos que fueron usados durante la fase de implementación. En esta sección se presentarán los resultados obtenidos.

4.1. Zona de estudio Inicialmente propuesta

La investigación fue planteada para desarrollar su fase de implementación en el departamento de Cundinamarca (figura 3.1), sin embargo fue necesario cambiar la zona de estudio debido a las siguientes consideraciones:

■ Desplazamiento de las imagenes Existe un desplazamiento entre las imagenes de los dos sensores, la figura 4.1. Debido a este desplazamiento se procedió a georeferenciar la imagen del sensor IKONOS tomando como base el mosaico de imagenes UltraCamX.

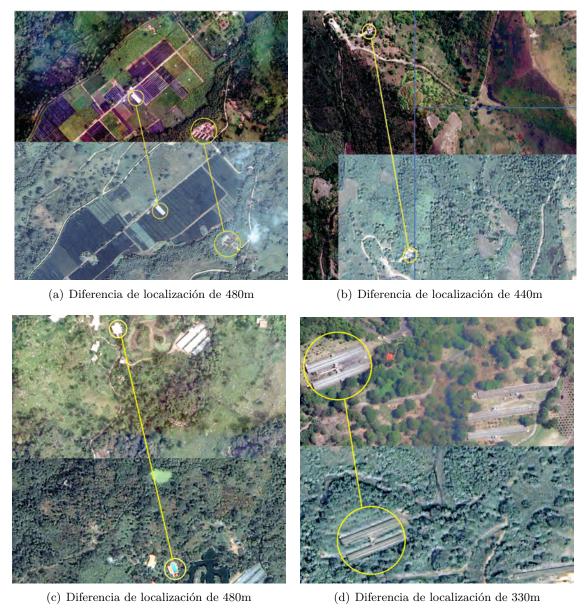


Figura 4.1: Varios ejemplos de diferencias de localización entre las imágenes IKONOS y Ultra-CamX en el área de estudio en Cundinamarca

La figura 4.1 presenta el error en desplazamiento entre la informacion disponible del sensor UltraCamX (imagen de tonalidades oscuras al fondo) y las imágenes del sensor IKONOS (imagenes en tonalidad clara). Estas imágenes están superpuestas y se señalan algunos ejemplos en los círculos de color amarillo.

■ Debido a la tamaño del área de traslape se dedidió tomar una región más pequeña de un tamaño de $51km^2$ 4.2.

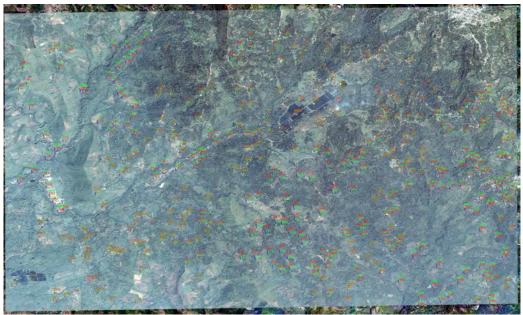


Figura 4.2: Distribución de los puntos de control en el proceso de Georeferenciación para una región de $51km^2$

En la elaboración de esta labor se identificaron 405 puntos de control los cuales compartían todos ellos sobre construcciones sin embargo el error medio cuadrático (RMS en inglés) resultante es de 40m. Por este motivo se trabajó en una más pequeña, figura $4.3~15km^2$ de extensión.

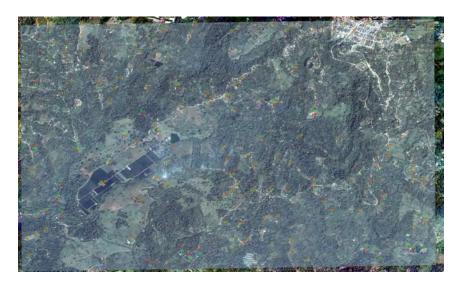


Figura 4.3: Distribución de los puntos de control en el proceso de Georeferenciación para una región de $15km^2$

Durante el desarrollo de esta labor se tomaron 168 puntos de control, obteniendo un RMS de 24m, debido a la baja calidad de los resultados, se revisaron los metadatos de la imagen encontrando que la escena IKONOS tiene un error aleatorio (ERR_RAND en inglés) de 19.70m.

Por último la calidad de la información de cultivos registrada en el SICA para esta región, no permite tener una certeza con respecto a la localización e identificación de los cultivos de café. Este tipo de incertidumbres se pueden visualizar en la figura 4.4.

Figura 4.4: Ejemplos de discrepancias entre la Información en SICA y las imágenes aéreas

La figura 4.4 presenta dos ejemplos de discrepancias entre la información almacenada en la base de datos del SICA sobre los lotes cafeteros y las imágenes aéreas. Es posible observar puntos en los cuales los lotes se traslapan con vías locales y construcciones.

4.2. Nueva zona de estudio

A partir de las consideraciones mencionadas en la sección 4.1 y de analizar las imágenes aéreas propiedad de la Federación Nacional de Cafeteros que se encuentran disponibles para el SICA, se delimitó una zona de estudio de $61Km^2$ que cubre parte del municipo de Dolores, Tolima 4.5.

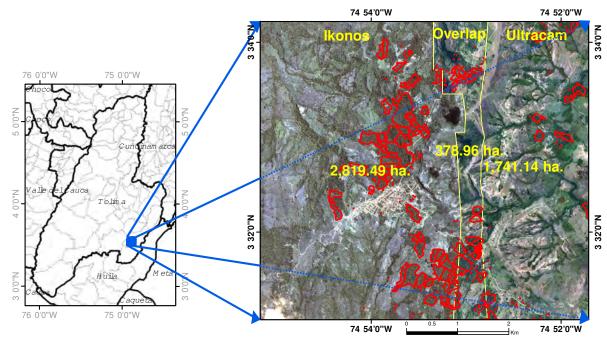


Figura 4.5: Área de Estudio en el Departamento del Tolima

Esta región a diferencia de la propuesta incialmente (Figura 3.1) tiene un porcentaje cubierto por imágenes de ambos sensores, siendo esta área de 4 km^2 . La región cubierta por la imágenes IKONOS y UltraCamX respectivamente es de $24Km^2$ y $33Km^2$ respectivamente.

4.2.1. Procesamiento Inicial

Posterior a la selección de la nueva área de estudio se procesaron las imágenes para llevar a cabo la clasificación según los paradigmas definidos en la sección 2.1. Este proceso incluyó la creación de nuevas capas de información a partir del procesamiento de las imágenes según lo presentado en la sección 2.2.1, como lo son el NDVI, figura 4.6, PCA 4.7 y el análisis de texturas figuras 4.8 y 4.9. Según la metodología empleada durante el desarrollo del proyeto y que se puede visualizar en las figuras 3.3, 3.4 y 3.5

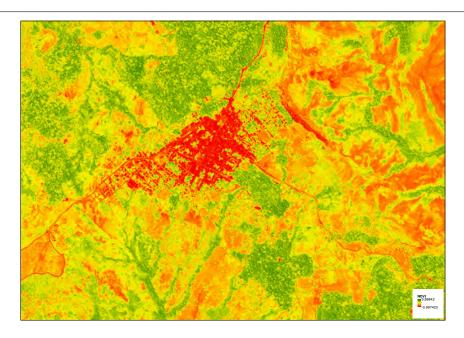


Figura 4.6: Indice de Vegetación Normalizado NDVI para la área de estudio cubierta por la escena del sensor IKONOS

Figura 4.7: Componentes Principal 1 para la área de estudio cubierta por la escena del sensor IKONOS

La figura 4.8 presenta resultados en el área de estudio para el análisis de texturas según los algoritmos presentados en la sección 2.2.1 empleando diferentes tamaños de ventana (entre 3x3 pixeles hasta 13x13 pixeles).

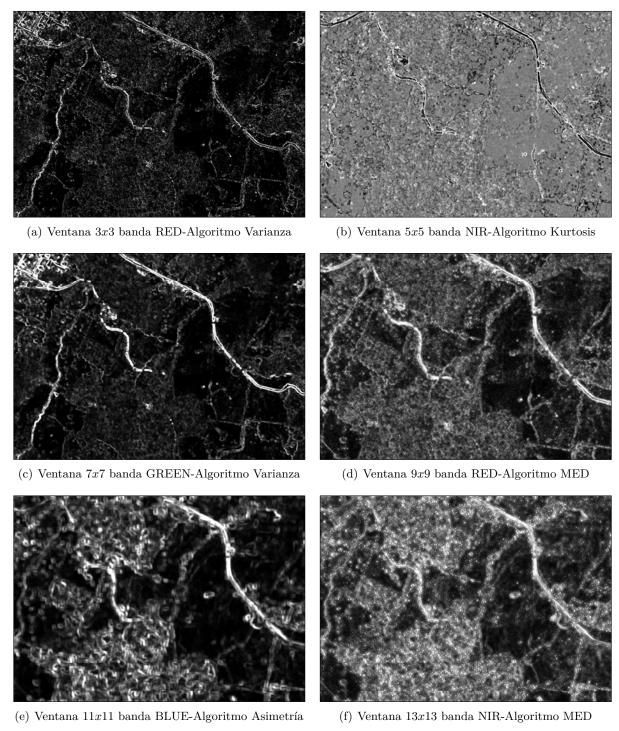


Figura 4.8: Varios resultados de análisis de texturas con diferentes algoritmos de análisis y tamaño de ventana en el área de estudio

Con base a los resultados obtenidos en la figura 4.8, en todas las ventanas empleadas se pueden identificar claramente un tipo de cobertura sobre el terreno, como lo son las vías (marcas lineales en color blanco, ejem. figuras 4.8(a) o 4.8(b)). Sin embargo la discriminación de regiones de interés para esta investigación (cultivos de café, pastos, bosques) se empieza a demarcar a partir de la ventana de 9x9 pixeles, con la cual el autor pudo identificar diferentes patrones de textura dentro de las imágenes que permiten diferenciar las clases definidas.

Por estos motivos, se decidió emplear una capa de texturas generada a partir de una ventana de 13x13 pixeles, para la banda azul y el algoritmo MED (ecuación 2.5), la cual se puede visualizar en la figura 4.9.

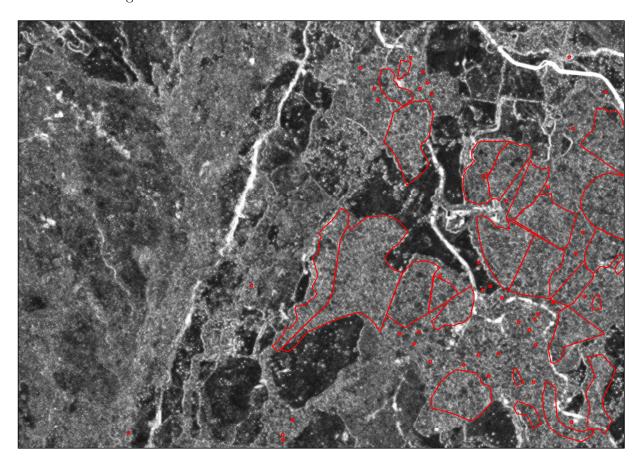


Figura 4.9: Capa de textura para una ventana de 13x13 de la banda azul y el algoritmo MED para la área de estudio cubierta por la escena del sensor IKONOS

Posterior a la generación de estas capas de información se generó un nuevo archivo el cual contiene las 4 bandas originales (R,G,B,NIR) y adicionalemente 3 nuevas bandas (NDVI,PC,Textura) como se presenta en la figura 4.10

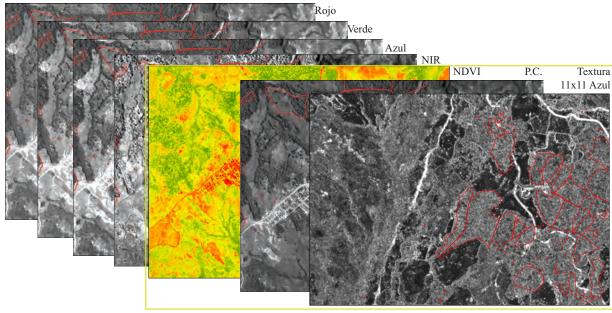


Figura 4.10: Estructura de los datos de entrada para el análisis.

La figura 4.11 presenta ejemplos de las clases identificadas en las imágenes así como la leyenda de colores definida en esta investigación.

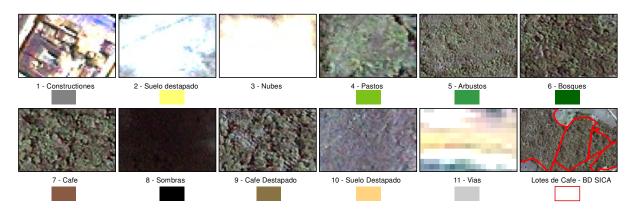


Figura 4.11: Ejemplos de cada clase y la leyenda de colores extraídas de la imagen IKONOS

4.3. Presentación de los resultados obtenidos por las técnicas de clasificación para la Imagen IKONOS

En esta sección se presentan los resultados obtenidos usando diferentes técnicas digitales sobre la imagen del sensor IKONOS (tabla 3.1), con base a los paradigmas basado en pixeles (Sección 4.3.1) y orientado a objetos (Sección 4.3.2), siendo evaluados en la sección 4.5. Las figuras 4.12, 4.13, 4.14 y 4.15 presentan varias regiones del área de estudio dentro de la imagen IKONOS, de las cuales se presentan posteriormente los resultados de la clasificación para las técnicas digitales empleadas.

Figura 4.12: Área Urbana, incluyendo cultivos Figura 4.13: Zona norte, incluyendo cultivos de café según el SICA de café según el SICA

Figura 4.14: Zona sur, incluyendo cultivos de Figura 4.15: Zona sur la cual incluye una gran café según el SICA regiún cubierta por nubes

4.3.1. Paradigma basado en pixeles

En el caso de las clasificaciones basadas en pixeles se usaron las técnicas Supervisada y No Supervisada, sección 2.1.1. Las figuras 4.16, 4.17, 4.18 y 4.19 presentan los resultados de la clasificación con estas técnicas sobre diferentes regiones del área de estudio.

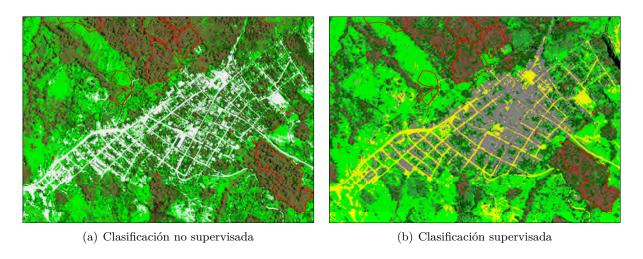


Figura 4.16: Resultados obtenidos en el área urbana

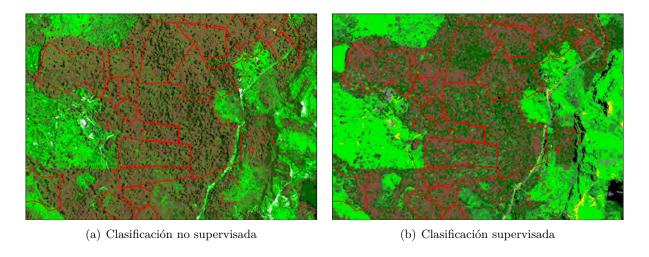


Figura 4.17: Resultados obtenidos en la zona norte de la imagen, incluyendo cultivos de café según el SICA

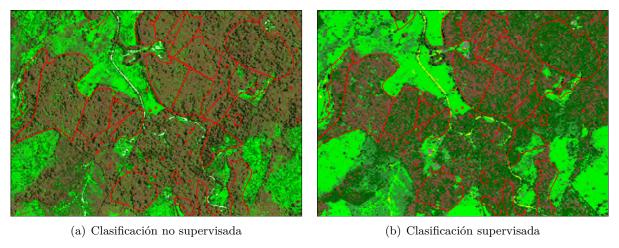


Figura 4.18: Resultados obtenidos en la zona sur de la imagen, incluyendo cultivos de café según el SICA

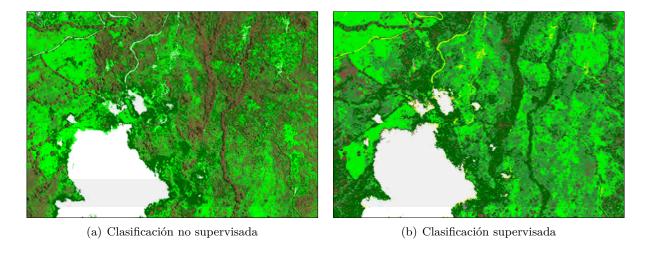


Figura 4.19: Resultados obtenidos sobre la zona sur de la imagen la cual incluye una gran región cubierta por nubes

4.3.2. Paradigma basado a objetos de imágen

Para la técnica OBIA se emplearon los modelos presentados en la metodología orientada a objetos de imagen (tabla 3.3). Las figuras 4.20, 4.21,4.22,4.23 presentan los resultados de la clasificación orientada a objetos sobre diferentes regiones del área de estudio.

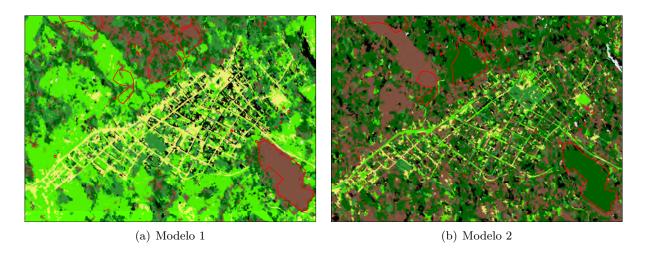


Figura 4.20: Resultados obtenidos en el área urbana

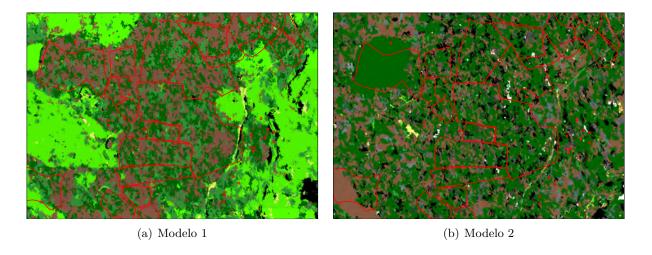


Figura 4.21: Resultados obtenidos en la zona norte de la imagen, incluyendo cultivos de café según el SICA

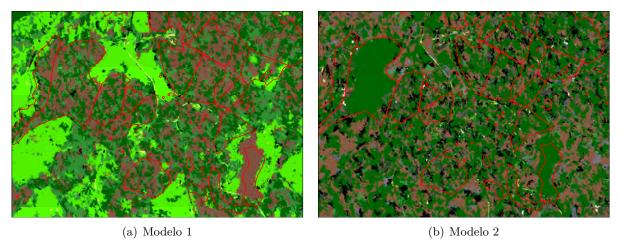


Figura 4.22: Resultados obtenidos en la zona sur de la imagen, incluyendo cultivos de café según el SICA

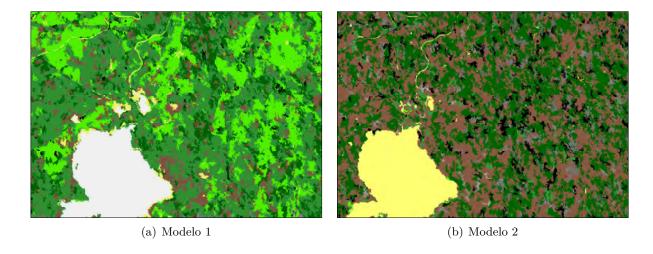


Figura 4.23: Resultados obtenidos sobre la zona sur de la imagen la cual incluye una gran regiún cubierta por nubes

4.4. Presentación de los resultados obtenidos por las técnicas de clasificación para la imagen UltraCamX

En esta sección se presentan los resultados obtenidos usando diferentes técnicas digitales sobre la imagen del sensor UltraCamX (table 3.2), con base a los paradigmas basado en pixeles (Sección 4.3.1) y orientado a objetos (Sección 4.3.2), siendo evaluados en la sección 4.5.

(a) Imagen UltraCamX

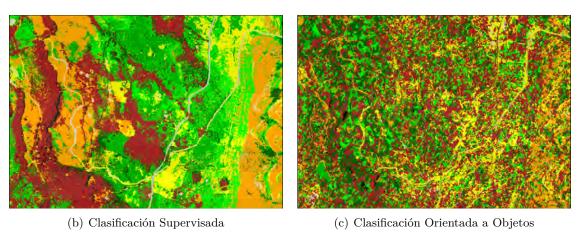
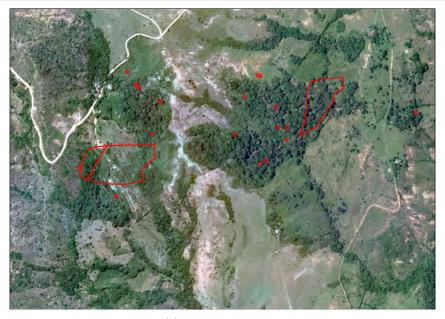


Figura 4.24: Resultados obtenidos sobre la zona Noroccidental de la imagen UltraCamX



(a) Imagen UltraCam

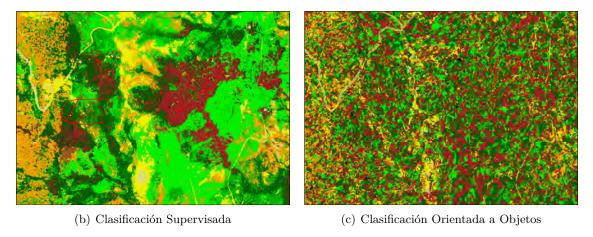


Figura 4.25: Resultados obtenidos sobre la zona Nororiental de la imagen Ultra $\operatorname{Cam} X$

(a) Imagen UltraCamX

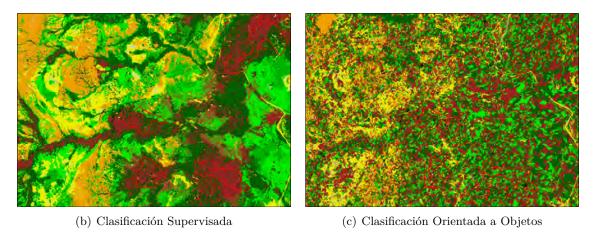
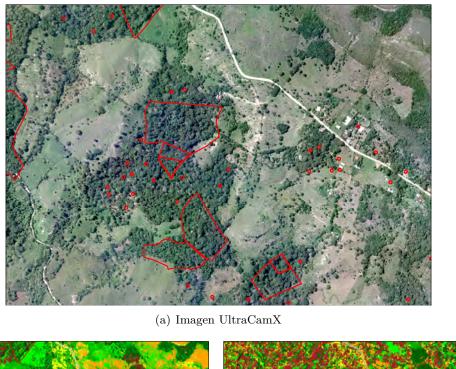


Figura 4.26: Resultados obtenidos sobre la zona Central de la imagen UltraCamX



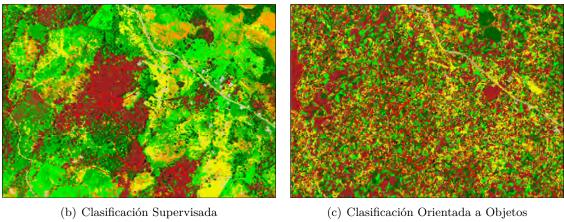


Figura 4.27: Resultados obtenidos sobre la zona Suroccidental de la imagen UltraCamX

4.5. Evaluación de la exactitud

Para realizar la evaluación de la exactitud se llevó a cabo un muestreo aleatorio sobre regiones de $20m \cdot 20m$ para un pixel de tamaño 1m, abarcando un total de 28 regiones sobre el área de estudio y un total de 11,200 pixeles. Durante el proceso del muestreo para la evaluación de la exactitud, no se incluyeron pixeles que hubieran sido parte de las muestras para el proceso de clasificación.

La figura 4.28 presenta el resultado de la clasificación para cada una de las técnicas digitales, con base a ejemplos como los que se presentan esta figura, se aplicó el filtro mayoritario sobre los resultados con el fin de generalizar los resultados obtenidos así como eliminar pixeles

aislados no deseados como se puede visualizar en los resultados que se presentan en la figura 4.29.

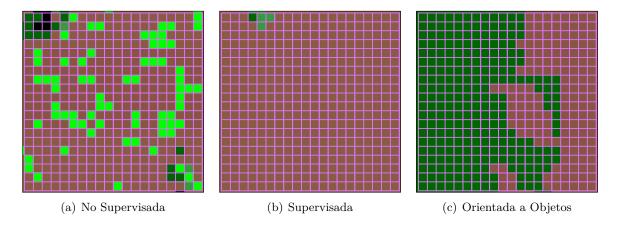


Figura 4.28: Resultado de la clasificación de café para las tres técnicas digitales llevadas a cabo en la fase de implementación

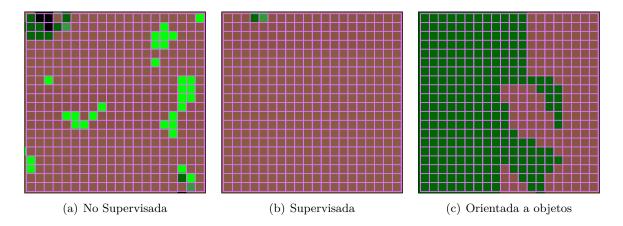


Figura 4.29: Refinado del resultado de la clasificación de café para las tres técnicas digitales llevadas a cabo en la fase de implementación

4.5.1. Paradigma Basado en Pixeles

Imagen IKONOS

Las tablas 4.1 y 4.2 presentan las matrices de confusión para las clasificaciones *no supervisada* y *supervisada* respectivamente.

Tabla 4.1: Matriz de Confusión para la clasificación no supervisada basada en Pixeles

	Construcciones	Suelo Destapado	Nubes	Pastos	Arbustos	Bosques	Café	Sombras	Total Fila	EU
Construcciones	93	0	83	167	0	329	130	1	803	11.58%
Suelo Destapado	0	0	593	9	0	0	0	0	602	0.00%
Nubes	0	0	794	6	0	0	0	0	800	99.25%
Pastos	0	0	98	949	27	113	57	0	1,244	76.29%
Arbustos	0	0	1	199	133	85	380	2	800	16.63%
Bosques	0	0	0	61	131	202	557	0	951	21.24%
Café	0	0	0	502	57	335	4,157	149	5,200	79.94%
Sombras	0	0	0	0	0	711	89	0	800	0.00%
Total Columna	93	0	1,569	1,893	348	1,775	5,370	152	11,200	
EP	100.00 %	0.00%	50.61%	50.13%	38.22%	11.38%	77.41%	0.00%		56.50%

La exactitud de la clasificación derivada a partir de la tabla 4.1 es:

$$EG = \frac{93 + 0 + 794 + 949 + 133 + 202 + 4,157 + 0}{11,200} = 56,50\%$$
(4.1)

Tabla 4.2: Matriz de Confusión para la clasificación supervisada basada en Pixeles

	Construcciones	Suelo Destapado	Nubes	Pastos	Arbustos	Bosques	Café	Sombras	Total Fila	EU
Construcciones	767	10	1	8	1	10	0	6	803	95.52%
Suelo Destapado	0	582	20	0	0	0	0	0	602	96.68%
Nubes	15	0	785	0	0	0	0	0	800	98.13%
Pastos	4	74	0	1,096	48	1	21	0	1,244	88.10%
Arbustos	0	0	0	15	656	66	63	0	800	82.00%
Bosques	10	0	0	12	95	612	215	7	951	64.35%
Café	0	0	0	0	62	684	4,454	0	5,200	85.65%
Sombras	0	0	0	0	0	11	0	789	800	98.63%
Total Columna	796	666	806	1,131	862	1,384	4,753	802	11,200	
EP	96.36%	87.39%	97.39%	96.91%	76.10%	44.22%	93.71%	98.38%		86.97%

La exactitud de la clasificación derivada a partir de la tabla 4.2 es:

$$EG = \frac{767 + 582 + 785 + 1,096 + 656 + 612 + 4,454 + 789}{11,200} = 86,97\%$$
 (4.2)

Con base a los resultados obtenidos en el proceso de evaluar la exactitud de las clasificaciones, el autor considera que la *clasificación supervisada* generó los resultados de mejor calidad para la clasificación considerando los siguientes factores:

• Exactitud Global:

$$EG_{CS} > EG_{NS} = 86,97\% > 56,50\%$$

Esto nos indica que los resultados obtenidos son más confiables puesto que de cada 100 pixeles clasificados, 86 de ellos fueron clasificados correctamente.

• Exactitud del Usuario:

$$EU_{CS,caf\acute{e}} > EU_{NS,caf\acute{e}} = \frac{4,454}{5,200} > \frac{4,157}{5,200} = 85,65\% > 79,94\%.$$

El clasificador supervisado no es sólo mejor a nivel global (para todas las clases), sino que también lo es para la detecció de café. Aunque para esta clase la diferencia entre los clasificadores disminuye $5.71\,\%$.

■ Exactitud del Productor:

$$EP_{CS,caf\acute{e}} > EP_{NS,caf\acute{e}} = \frac{4,454}{4,753} > \frac{4,157}{5,370} = 93,71\% > 77,41\%.$$

Otro indicador de la calidad de los resultados es el hecho que el 93,71 % de los pixeles asignados como café fueron clasificados como tal.

Una vez presentados los resultados de los clasificadores y de realizar la comparación de ambas técnicas digitales se aplicó el filtro mayoritario sobre los resultados inicialmente obtenidos para refinar la calidad de la clasificación. Posteriormente tomaron las muestras sobre las imágenes y se procedió a generar la matriz de confusión para las clasificaciones no supervisada (tabla 4.3) y supervisada (tabla 4.4)

Tabla 4.3: Matriz de Confusión para la generalización de la clasificación no supervisada basada en Pixeles

	Construcciones	Suelo Destapado	Nubes	Pastos	Arbustos	Bosques	Café	Sombras	Total Fila	\mathbf{EU}
Construcciones	95	0	79	177	0	336	115	1	803	11.83 %
Suelo Destapado	0	0	594	8	0	0	0	0	602	0.00%
Nubes	0	0	798	2	0	0	0	0	800	99.75%
Pastos	0	0	102	994	15	100	33	0	1,244	79.90%
Arbustos	0	0	1	187	123	65	423	1	800	15.38%
Bosques	0	0	0	48	22	185	604	92	951	19.45%
Café	0	0	0	237	28	257	4,535	143	5,200	87.21%
Sombras	0	0	0	0	0	781	19	0	800	0.00%
Total Columna	95	0	1,574	1,653	188	1,724	5,729	237	11,200	
EP	100.00%	0.00 %	50.70 %	60.13%	65.43%	10.73%	79.16%	0.00 %		60.09%

La exactitud de la clasificación derivada a partir de la tabla 4.3 es:

$$EG = \frac{95 + 0 + 798 + 994 + 123 + 185 + 4,535 + 0}{11,200} = 60,09\%$$
(4.3)

Los resultados obtenidos permiten observar un incremento en la calidad de la clasificación no supervisada tanto de la EG como las EU y EP para la clase Café, presentando los siguientes resultados:

$$EG_{NS} > EG_{r,NS} = 60,09\% > 56,50\%$$
 (4.4)

$$EU_{NS} > EU_{r,NS} = 87.21\% > 79.94\%$$
 (4.5)

$$EP_{NS} > EP_{r,NS} = 79.16\% > 77.41\%$$
 (4.6)

De acuerdo a [13] un estimador insesgado de la varianza se muestra en la ecuación 4.7.

$$Var\left(\hat{p}\right) = \frac{N-n}{N} \frac{\hat{p}\left(1-\hat{p}\right)}{n-1} \tag{4.7}$$

Donde: N número total de pixeles, n número de muestras recolectadas \hat{p} la exactitud estimada de la clase. La estimación de un intervalo de confianza al 90 % es presentado en la ecuación 4.8

$$\hat{p} \pm t_{1-0,9/2,n-1} \sqrt{var(\hat{p})} \tag{4.8}$$

Con base a las ecuaciones 4.7, 4.8 y la tabla 4.3, el intervalo de confianza para la identificación de café para la clasificación no supervisada de la imagen IKONOS es:

$$(86.39\% : 88.03\%)$$

Tabla 4.4: Matriz de Confusión para la generalización de la clasificación supervisada basada en Pixeles

	Construcciones	Suelo Destapado	Nubes	Pastos	Arbustos	Bosques	Café	Sombras	Total Fila	$\mathbf{E}\mathbf{U}$
Construcciones	777	10	0	4	1	8	0	3	803	96.76 %
Suelo Destapado	0	582	20	0	0	0	0	0	602	96.68%
Nubes	12	0	788	0	0	0	0	0	800	98.50%
Pastos	4	76	0	1,101	42	1	20	0	1,244	88.50%
Arbustos	0	0	0	11	679	57	53	0	800	84.88%
Bosques	7	0	0	11	93	633	202	5	951	66.56%
Café	0	0	0	0	43	637	$4,\!520$	0	5,200	86.92%
Sombras	0	0	0	0	0	7	0	793	800	99.13%
Total Columna	800	668	808	1,127	858	1,343	4,795	801	11,200	
EP	97.13 %	87.13 %	97.52%	97.69 %	79.14 %	47.13 %	94.26 %	99.00 %		88.15 %

La exactitud de la clasificación derivada a partir de la tabla 4.4 es:

$$EG = \frac{777 + 582 + 788 + 1,101 + 679 + 633 + 4,520 + 793}{11200} = 88,15\%$$
(4.9)

Con base a las ecuaciones 4.7, 4.8 y la tabla 4.4, el intervalo de confianza para la clasificación supervisada de la imagen IKONOS es:

$$(86,10\%;87,74\%)$$

En el caso de la clasificación supervisada, se observa un incremento en la calidad de los resultados iniciales sin embargo es la variación es menor comparado con la clasificación no supervisada. Los resultados obtenidos fueron:

$$EG_{CS} > EG_{r,CS} = 88.15\% > 86.97\%$$
 (4.10)

$$EU_{CS} > EU_{r,CS} = 86,92\% > 85,65\%$$
 (4.11)

$$EP_{CS} > EP_{r,CS} = 94,26\% > 93,71\%$$
 (4.12)

A partir de los valores obtenidos durante el proceso de refinación de los resultados iniciales, la comparación de los dos técnicas digitales nuevamente nos indica que el clasificador supervisado arroja mejores resultados tal y como se puede observar en las siguientes comparaciones:

• Exactitud Global:

$$EG_{CS} > EG_{NS} = 86,97\% > 56,50\%.$$

- Exactitud del Usuario: $EU_{CS,Caf\acute{e}} > EU_{NS,Caf\acute{e}} = 85,65 \% > 79,94 \%.$
- Exactitud del Productor: $EP_{CS,Caf\acute{e}} > EP_{NS,Caf\acute{e}} = 93,71\,\% > 77,41\,\%.$

Imagen UltraCamX

Es importante tener presente que la información capturada por el sensor UltraCamX tiene una resolución espacial mayor con respecto al sensor IKONOS, teniendo cada pixel en terreno una resolución de 0,4m y 1m respectivamente. Por tal motivo, la imagen del sensor UltraCamX permite identificar de manera clara regiones sembradas con café al sol (sin sombrío), siendo empleadas varias de estas regiones como áreas de entrenamiento para los clasificadores. La tabla 4.5 presenta la evaluación de la exactitud de la clasificación supervisada para la imagen UltraCamX.

Tabla 4.5: Matriz de Confusión de la clasificación supervisada para la imagen UltraCamX

	Arbustos	Bosques	Café	Café Descubierto	Construcciones	Pastos	Suelo Destapado	Suelo Rocoso	Vias	Total Fila	EU
Arbustos	7,460	6,250	11,566	1,020	0	5,150	22	4,237	0	35,705	20.89 %
Bosques	474	23,157	35,270	962	0	1,303	3	330	0	61,499	37.65%
Café	3,341	16,570	61,763	2,385	10	8,956	186	2,132	0	95,343	64.78%
Café Descubierto	1,273	831	4,830	534	118	2,330	452	2,050	0	12,418	4.30%
Construcciones	0	1	1	0	544	2	17	52	1	618	88.03%
Pastos	8,832	7,278	96	1,587	0	68,957	897	1,558	0	89,205	0.00%
Suelo Destapado	394	77	777	44	1,341	459	8,354	31,994	460	43,900	3.05%
Suelo Rocoso	23	2	702	161	75	34	7	6,679	0	7,683	0.985%
Vias	0	0	0	0	3,816	0	797	2	3,089	7,704	49.53%
Total Columna	21,797	54,166	115,005	6,693	5,904	87,191	10,735	49,034	3,550	354,075	
EP	34.22%	42.75%	53.70%	7.98%	9.21%	79.09%	77.82%	13.62%	87.01 %		50.99 %

La exactitud de la clasificación derivada a partir de la tabla 4.5 es:

$$EG = \frac{7,460 + 23,157 + 61,763 + 534 + 544 + 68,597 + 8,354 + 6,679 + 3,089}{354,0775} = 50,99\%$$
(4.13)

Con base a las ecuaciones 4.7, 4.8 y la tabla 4.5, el intervalo de confianza para la clasificación supervisada de la imagen UltraCamX es:

$$(64,47\%;65,09\%)$$

Las otras evaluaciones en el caso concreto de las clases café y café descubierto arrojan:

• Exactitud del Usuario:

$$EU_{CS,Caf\acute{e}}=\frac{61,763}{95,343}=64,78\,\% \text{ Para la clase caf\'e}$$

$$EU_{CS,CD}=\frac{534}{12,418}=4,3\,\% \text{ Para la clase caf\'e descubierto}$$

• Exactitud del Productor:

$$EP_{CS,Caf\acute{e}}=\frac{61,763}{115,005}=53,70\,\% \text{ Para la clase caf\'e}$$

$$EU_{CS,CD}=\frac{534}{6,693}=7,98\,\% \text{ Para la clase caf\'e descubierto}$$

4.5.2. Paradigma orientado a objetos de imágen

Imagen IKONOS

Para el paradigma basado en objetos se generaron dos clasificadores con base a los modelos presentados en la tabla 3.3. Las tablas 4.6 y 4.7 contienen los resultados de la evaluación de exactitud para la clasificación orientada a objetos de imagen. Los valores obtenidos después del refinamiento de los resultados iniciales del clasificador son presentados en las tablas 4.6 y 4.7.

Tabla 4.6: Matriz de Confusión para el modelo 1 de la clasificación orientada a objetos de imágen

	Construcciones	Suelo Destapado	Nubes	Pastos	Arbustos	Bosques	Café	Sombras	Total Fila	EU
Construcciones	0	93	0	364	65	0	0	281	803	0.00 %
Suelo Destapado	0	598	0	2	0	0	0	2	602	99.34%
Nubes	0	110	690	0	0	0	0	0	800	86.25%
Pastos	0	110	0	981	42	38	73	0	1,244	78.86%
Arbustos	0	0	29	51	520	200	0	0	800	65.00%
Bosques	0	0	0	10	233	680	28	0	951	71.50%
Café	0	0	0	0	750	1,083	3,367	0	5,200	64.75%
Sombras	0	0	0	0	0	0	0	800	800	100.00%
Total Columna	0	911	719	1,408	1,610	2,001	3,468	1,083	11,200	
EP	0.00 %	65.64%	95.97%	69.67%	32.30%	33.98%	97.09 %	73.87%		68.18 %

La exactitud de la clasificación derivada a partir de la tabla 4.6 es:

$$EG = \frac{0 + 598 + 690 + 981 + 520 + 680 + 3,218 + 800}{11200} = 68,18\%$$
 (4.14)

Tabla 4.7: Matriz de Confusión para el modelo 2 de la clasificación orientada a objetos de imágen

	Construcciones	Suelo Destapado	Nubes	Pastos	Arbustos	Bosques	Café	Sombras	Total Fila	$\mathbf{E}\mathbf{U}$
Construcciones	354	11	0	45	0	110	283	0	803	44.08 %
Suelo Destapado	95	287	158	62	0	0	0	0	602	0.00%
Nubes	0	0	238	30	0	108	424	0	800	29.75%
Pastos	59	0	0	478	316	0	391	0	1244	38.42%
Arbustos	0	78	22	301	12	0	387	0	800	1.50%
Bosques	3	0	0	30	120	150	648	0	951	27.44%
Café	0	167	114	1832	48	148	2,782	109	5200	53.50%
Sombras	0	97	52	348	0	263	40	0	800	0.00%
Total Columna	511	640	584	3126	496	779	4955	109	11200	
EP	69.28 %	0.00 %	55.87 %	12.94%	2.84 %	29.33 %	58.01 %	0.00 %		36.83 %

La exactitud de la clasificación derivada a partir de la tabla 4.7 es:

$$EG = \frac{354 + 287 + 238 + 478 + 12 + 150 + 2,782 + 0}{11200} = 33,83\%$$
 (4.15)

Con base a los resultados obtenidos por los dos modelos y presentados en las tablas 4.6 y 4.7 se determinó que el modelo 1 genera los mejores resultados para la clasificación de acuerdo a las siguientes consideraciones:

• Exactitud Global:

$$EG_{OBIA;M1} > EG_{OBIA;M2} = 68,18\% > 36,83\%.$$

Esto nos indica que los resultados obtenidos son más confiables puesto que de cada 100 pixeles clasificados, 68 de ellos fueron clasificados correctamente comparado con los 36 de cada 100 pixeles según el modelo 2.

• Exactitud del Usuario:

$$EU_{CS,caf\acute{e}} > EU_{NS,caf\acute{e}} = \frac{3,367}{5,200} > \frac{2,782}{5,200} = 64,75\% > 53,50\%.$$

El modelo 1 del clasificador orientado a objetos no es sólo mejor a nivel global (para todas las clases), sino que también lo es para la detecció de café. Con una diferencia porcentual entre los clasificadores de 11,25 %.

$$\bullet$$
 Exactitud del Productor:
$$EP_{CS,caf\acute{e}} > EP_{NS,caf\acute{e}} = \tfrac{4,454}{4,753} > \tfrac{4,157}{5,370} = 97,09\,\% > 58,01\,\%.$$

Otro indicador de la calidad de los resultados es el hecho que el 97.09 % de los pixeles asignados como café fueron clasificados como tal.

Los resultados obtenidos de la EG para el clasificador orientado a objetos es bajo, puesto que 68 de cada 100 pixeles fueron correctamente clasificados, los valores obtenidos para las exactitud del usuario y del productor son:

$$EU_{OBIA;M1,Caf\acute{e}} = \frac{3,367}{5,200} = 64,75\%$$
(4.16)

$$EP_{OBIA;M1,Caf\acute{e}} = \frac{3,367}{3,468} = 97,09\%$$
(4.17)

Sin embargo la calidad de los pixeles clasificados como café según la EP es muy alta, de cada 100 clasificados como café, 97 corresponden como tal a la clase. Posterior a la evaluación y comparación de los resultados obtenidos para los dos modelos empleados en el paradigma basado en objetos, se realizó el proceso de filtrado sobre los resultados inicialmente obtenidos y se generaron las respectivas matrices de confusión para las clasificaciones (tablas 4.8 y 4.9)

Tabla 4.8: Matriz de Confusión para la generalización del modelo 1 de la clasificación orientada a objetos de imágen

	Construcciones	Suelo Destapado	Nubes	Pastos	Arbustos	Bosques	Café	Sombras	Total Fila	$\mathbf{E}\mathbf{U}$
Construcciones	0	95	0	367	65	0	0	276	803	0.00 %
Suelo Destapado	0	598	0	2	0	0	0	2	602	99.34%
Nubes	0	111	689	0	0	0	0	0	800	86.13%
Pastos	0	110	0	985	40	38	71	0	1,244	79.18%
Arbustos	0	0	0	49	523	198	30	0	800	65.38%
Bosques	0	0	0	10	234	682	25	0	951	71.71%
Café	0	0	0	0	750	1,083	3,367	0	5,200	64.75 %
Sombras	0	0	0	0	0	0	0	800	800	100.00%
Total Columna	0	914	689	1,413	1,612	2,001	3,493	1,078	11,200	
EP	0.00 %	65.43%	100.00 %	69.71 %	32.44 %	34.08 %	96.39%	74.21%		68.25%

La exactitud de la clasificación derivada a partir de la tabla 4.8 es:

$$EG = \frac{0 + 598 + 689 + 985 + 523 + 682 + 3,235 + 800}{11,200} = 68,25\%$$
 (4.18)

Con base a las ecuaciones 4.7, 4.8 y la tabla 4.8, el intervalo de confianza para la identificación de café usando la imagen IKONOS y el modelo 1 para OBIA es:

$$(63.40\% : 66.10\%)$$

Tabla 4.9: Matriz de Confusión para la generalización del modelo 2 de la clasificación orientada a objetos de imágen

	Construcciones	Suelo Destapado	Nubes	Pastos	Arbustos	Bosques	Café	Sombras	Total Fila	$\mathbf{E}\mathbf{U}$
Construcciones	438	10	38	208	0	58	51	0	803	54.55%
Suelo Destapado	3	382	150	65	0	2	0	0	602	63.46%
Nubes	8	12	271	509	0	0	0	0	800	33.88%
Pastos	0	17	6	916	89	0	216	0	1244	73.63%
Arbustos	0	0	0	139	80	120	461	0	800	10.00%
Bosques	0	0	0	47	117	169	618	0	951	17.77%
Café	18	0	0	1053	433	354	3,334	8	5200	64.12%
Sombras	170	0	0	0	0	0	0	630	800	78.75%
Total Columna	637	421	465	2937	719	703	4680	638	11200	
EP	68.76%	90.74 %	58.28%	31.19%	11.13%	24.04%	71.24%	98.75%		55.54%

La exactitud de la clasificación derivada a partir de la tabla 4.9 es:

$$EG = \frac{438 + 382 + 271 + 916 + 80 + 169 + 3,334 + 630}{11,200} = 55,54\%$$

$$(4.19)$$

Con base a las ecuaciones 4.7, 4.8 y la tabla 4.9, el intervalo de confianza para la identificación de café usando la imagen IKONOS y el modelo 2 para OBIA es:

$$(62,62\%;65,62\%)$$

Posterior al refinamiento de los resultados de la clasificación los resultados no presenta una variación de fondo en cuanto al hecho que el mejor clasificador para el paradigma basado en objetos según los dos modelos empleados en esta investigación es el Modelo 1 de acuerdo a los resultados obtenidos por la evaluación de la exactitud de las clasificaciones:

- Exactitud Global: $EG_{OBIA;M1} > EG_{OBIA;M2} = 67,07\% > 55,54\%$.
- Exactitud del Usuario: $EU_{OBIA;M1,Caf\acute{e}} > EU_{OBIA;M2,Caf\acute{e}} = 64,75\,\% > 64,12\,\%.$
- Exactitud del Productor: $EP_{OBIA;M1,Caf\acute{e}} > EP_{OBIA;M2,Caf\acute{e}} = 96,39 \% > 71,24 \%.$

Los resultados obtenidos por el refinado de la clasificación presentan una variación muy baja, algo que es perceptible en el caso del EG el cual ingrementa su valor en un 0,07%, el EU para la clase café no presenta variación en sus resultados e inclusive la EP disminuye su calidad en un 0,7%.

Imagen UltraCamX

Las tablas 4.10, 4.11 contienen los resultados de la evaluación de exactitud para OBIA en la imagen UltraCamX.

Tabla 4.10: Matriz de Confusión para el modelo 1 de la clasificación orientada a objetos de imágen

	Arbustos	Bosques	Café	Café Descubierto	Construcciones	Pastos	Suelo Destapado	Suelo Rocoso	Vias	Total Fila	$\mathbf{E}\mathbf{U}$
Arbustos	4,470	10,172	12,277	514	156	6,108	915	1,117	1	35,730	12.51 %
Bosques	4,970	18,970	25,599	536	49	9,008	540	1,778	0	61,450	30.87%
Café	7,703	22,129	49,351	1,942	96	9,724	1,816	5,332	11	98,104	50.3%
Café Descubierto	1,257	1,117	3,853	903	147	1,479	2,028	1,617	17	12,418	7.27%
Construcciones	11	5	89	0	25	9	152	323	4	618	4.05%
Pastos	4,227	22,135	44,993	1,669	66	15,286	509	68	252	89,205	17.14%
Suelo Destapado	3,316	2,381	8,210	793	1,084	1,205	6,731	19,595	791	44,106	15.26%
Suelo Rocoso	756	576	1,223	77	108	28	308	4,756	5	7,837	60.69%
Vias	195	643	1,112	193	119	66	3,461	634	1,281	7,704	16.63%
Total Columna	26,905	78,128	146,707	6,627	1,850	42,913	16,460	35,220	2,362	357,172	
EP	16.61 %	24.28 %	33.64%	13.63 %	1.35 %	35.62 %	40.89 %	13.5 %	54.23 %		28.49 %

La exactitud de la clasificación derivada a partir de la tabla 4.10 es:

$$EG = \frac{4,470+18,970+49,351+903+25+6,731+4,756+1,281}{357,172} = 28,49\%$$
 (4.20)

Con base a las ecuaciones 4.7, 4.8 y la tabla 4.10, el intervalo de confianza para la identificación de café para el modelo 1 OBIA por el sensor UltraCamX:

$$(49,93\%;50,67\%)$$

Las otras evalucaciones en el caso concreto de las clases café y café descubierto arrojan:

• Exactitud del Usuario:

$$EU_{CS}=\frac{49,351}{98,104}=64,78\,\%$$
 Para la clase café
$$EU_{CS}=\frac{903}{12,418}=7,27\,\%$$
 Para la clase café descubierto

■ Exactitud del Productor:

$$EP_{CS} = \frac{49,351}{146,707} = 53,70 \%$$
 Para la clase café $EU_{CS} = \frac{903}{6,627} = 13,63 \%$ Para la clase café descubierto

Tabla 4.11: Matriz de Confusión para el modelo 2 de la clasificación orientada a objetos de imágen

	Arbustos	Bosques	Café	Café Descubierto	Construcciones	Pastos	Suelo Destapado	Suelo Rocoso	Vias	Total Fila	EU
Arbustos	3,752	6,436	14,225	580	194	4,960	351	4,762	60	35,320	10.62 %
Bosques	4,809	16,478	26,093	319	250	6,715	400	6,618		61,682	26.71%
Café	7,042	18,419	49,309	1,015	271	7,348	1,929	12,150	251	97,734	50.45%
Café Descubierto	555	1,102	3,669	982	216	745	1,623	3,344	182	12,418	7.91%
Construcciones	0	27	179	17	65	42	162	64	62	618	10.52%
Pastos	8,375	24,460	38,737	924	7	8,142	386	7,911	67	89,009	9.15%
Suelo Destapado	2,752	3,493	12,471	1,456	773	2,998	9,347	9,476	1,465	44,231	21.13%
Suelo Rocoso	398	348	1,891	284	55	796	1,484	2,201	376	7,833	28.10%
Vias	705	60	1,290	424	128	629	2,114	1,922	432	7,704	5.61%
Total Columna	28,388	70,823	147,864	6,001	1,959	32,375	17,796	48,448	2,895	356,549	
EP	13.22%	23.27%	33.35%	16.36%	3.32 %	25.15%	52.52%	4.54%	14.92%		25.44 %

Con base a las ecuaciones 4.7, 4.8 y la tabla 4.11, el intervalo de confianza para la identificación de café para el modelo 1 OBIA por el sensor UltraCamX:

$$(50,08\%;50,82\%)$$

Con base a los resultados obtenidos en las tablas 4.10 y 4.11 se determinó el modelo 1 como el modelo que mejor identifica cultivos de café a partir de las siguientes comparaciones:

• Exactitud Global: $EG_{OBIA:M1} > EG_{OBIA:M2} = 28.49\% > 25.44\%$.

■ Exactitud del Usuario: $EU_{OBIA;M1,Caf\acute{e}} < EU_{OBIA;M2,Caf\acute{e}} = 50,3\,\% < 50,45\,\%.$

■ Exactitud del Productor: $EP_{OBIA:M1.Caf\acute{e}} > EP_{OBIA:M2.Caf\acute{e}} = 33,64\% > 33,35\%.$

A pesar que los resultados de la exactitud global y del productor para la clase Café es mayor, los resultados obtenidos por ambos clasificadores es bajo para considerar estos resultados como válidos.

4.6. Comparación de los resultados obtenidos entre las técnicas digitales para cada sensor

A partir de los resultados obtenidos por los clasificadores empleados los cuales son presentados en la sección 4.5 y con el fin de dar respuesta al segundo objetivo específico de esta investigación en esta sección se comparan los resultados de las técnicas digitales basadas en objetos y pixeles en la detección de cultivos de café.

Para la clase café, los resultados obtenidos para la exactitud del usuario y del productor son presentados en la tabla 4.12 para el caso de la imagen del sensor IKONOS y tabla 4.13 para la imagen del sensor UltraCamX.

Tabla 4.12: Comparación de los resultados obtenidos por las técnicas digitales para la imagen IKONOS

Técnica	EG	EU	EP	Intervalo de Confianza
No Supervisada	60,09%	$87{,}21\%$	$79{,}16\%$	(86,39%;88,03%)
Supervisada	88,15 %	86,92 %	94,26 %	$(86,10\ \%\ ;87,74\ \%)$
OBIA Modelo 1	$68{,}25\%$	$64{,}75\%$	$96{,}39\%$	(63,40%;66,10%)
OBIA Modelo 2	$55{,}54\%$	$64{,}12\%$	$71{,}24\%$	$(62,\!62\%\;;65,\!62\%)$

Tabla 4.13: Comparación de los resultados obtenidos por las técnicas digitales para la imagen UltraCamX

Técnica	EG	EU	EP	Intervalo de Confianza
Supervisada	50,99 %	53,70 %	64, 78%	$(\mathbf{64,47\%;65,09\%})$
OBIA Modelo 1	$28{,}49\%$	$50{,}30\%$	$33{,}64\%$	(49,93%;50,67%)
OBIA Modelo 2	$25{,}44\%$	$50{,}45\%$	$33{,}35\%$	(50,08%;50,82%)

Con base a la tabla 4.12 se puede observar que el clasificador basado en pixeles en el caso del café arroja mejores resultados en el evaluación de la exactitud del usuario, la diferencia entre ambas técnicas es superior al $22\,\%$, sin embargo la exactitud del productor nos indica que el clasificador orientado a objetos es ligeramente mejor por $2.83\,\%$.

Con base a este análisis, se considera que la técnica digital que arroja los mejores resultados en la identificación de cultivos de café es el clasificador supervisado del paradigma basado en pixeles, adicionalmente la exactitud global es superior en un $18.79\,\%$ con respecto al paradigma orientado a objetos de imagen.

A partir de los resultados presentados en la tabla 4.13 se considera al paradigma basado en pixeles como el aquel que ofrece los resultados para la identificación de cultivos de café sobre imágenes del sensor UltraCamX.

4.7. Comparación de los resultados obtenidos en la identificación de cultivos de café sobre un área en común entre imágenes de los dos sensores

Con el fin de dar respuesta al tercer objetivo de esta investigación a continuación se presenta la evaluación de exactitud para la mejor técnica digital según cada sensor sobre un área específica de traslape entre ambas imágenes.

La figura 4.30 presenta 8 cultivos de café (poligonos rellenos de rosado) con un área de 9,59ha que se encuentran dentro del área de traslape (poligono de borde amarillo) de las dos imágenes empleadas en esta investigación. El costado Occidental del área de estudio es cubierta por la imagen del sensor IKONOS, el costado Oriental del área de estudio es cubierto por la imagen del sensor UltraCamX.

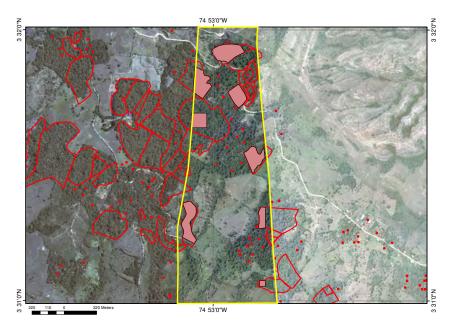


Figura 4.30: Cultivos de café seleccionados para la comparación entre los resultados obtenidos de la mejor técnica digital para cada sensor.

La tabla 4.14 presenta los resultados obtenidos por los clasificadores sobre los cultivos identificados en la figura 4.30.

Tabla 4.14: Comparación de los resultados obtenidos por las dos técnicas digitales para la identificación de cultivos de café sobre un área de traslape entre imágenes de ambos sensores

Resultados sensor IKONOS			Resultados sensor UltraCamX			
clase	No. Pixeles	Porcentaje	clase	No. Pixeles	Porcentaje	
ARBUSTOS	9,023	9.37%	ARBUSTOS	3,174	3.29%	
BOSQUES	47,692	49.51%	BOSQUES	15,898	16.49%	
$\mathrm{CAF}\acute{\mathrm{E}}$	37,991	39.44%	$\mathrm{CAF\acute{E}}$	63,407	65.78%	
CONSTRUCCIONES	110	0.11%	CONSTRUCCIONES	10	0.01%	
PASTOS	1,291	1.34%	PASTOS	8,619	8.94%	
SOMBRAS	185	0.19%	SOMBRAS	2,971	3.08%	
SUELO DESPEJADO	42	0.04%	SUELO DESPEJADO	186	0.19%	
			SUELO ROCOSO	2,124	2.20%	
TOTAL	96,334	100 %	TOTAL	96,389	100 %	

5 Discusión

En el desarrollo de esta investigación se plantearon los siguientes objetivos especícos (sección 1.2.3):

- 1. Usar dos técnicas digitales de análisis de imágenes, una basada en objetos de imágen y otra basada en pixeles, para la identificación de cultivos de café usando imágenes multiespectrales de alta resolución espacial (IKONOS).
- 2. Comparar los resultados obtenidos a partir de las dos técnicas digitales, basadas en objetos y pixeles, para la identificación de cultivos de café.
- 3. Establecer si la exactitud de la identificación de cultivos de café mejora si, en lugar de emplear escenas IKONOS, se utilizan imágenes Ultracam de la misma zona de estudio.

En este capítulo, se examinarán los resultados obtenidos durante la fase de implementación a la luz de cada uno de estos objetivos.

5.1. Usar dos técnicas digitales de análisis de imágenes, una basada en objetos de imágen y otra basada en pixeles, para la identificación de cultivos de café usando imágenes multiespectrales de alta resolución espacial (IKONOS).

Aunque inicialmente se planteó el uso de una técnica digital para cada uno de los paradigmas, se decidió implementar dos técnicas para el paradigma basado en pixeles debido a las características propias de cada una.

La Clasificación No Supervisada, no requiere un conocimiento de profundo por parte del autor sobre el área de estudio y las clases que se desean identificar [49] siendo esto una ventaja inicial puesto que permitió al autor familiarizarse con la región objeto a clasificar. Para esta investigación se conocen las regiones donde se localizan los cultivos de café, con base a la información recolectada en las bases de datos del SICA; sin embargo las otras clases clasificadas como bosques o arbustos fueron estimadas a partir de los resultados obtenidos por el algoritmo de clasificación K-means.

En el caso de la *clasificación supervisada*, las muestras que se tomaron para la determinación de las firmas espectrales, se llevaron a cabo sobre regiones identificadas durante la etapa de exploración del área de estudio según la metodología propuesta (figura 3.4).

Los atributos y parámetros seleccionados para la clasificación orientada a objetos fueron determinados a partir de un enfoque sistemático de prueba/error sobre la imagen ikonos del área

de estudio como es desarrollado en [82]. A pesar que en la actualidad las plataformas de software ofrecen múltiples herramientas para establecer los atributos que definiran los objetos, es un proceso de prueba computacionalmente demandante debido al tamaño del área de estudio.

El filtro mayoritario se aplicó a los resultados obtenidos para cada uno de los clasificadores en esta investigación como un procesamiento posterior buscando mejorar la coherencia espacial reclasificando píxeles [83]. Sin embargo al momento de comparar los resultados obtenidos sólo se encuentra una variación significativa en el caso de la clasificación no supervisada (La EG pasó de $56.50\,\%$ a $60.09\,\%$ y las EU y EP se incrementaron de $79.94\,\%$ y $77.41\,\%$ a $87.21\,\%$ a $79.16\,\%$ respectivamente), sin embargo en los otros clasificadores esta incremento fue mucho menor e inclusive en el caso de la clase Café para la clasificación orientada a objetos, los resultados variaron de forma negativa, lo cual es posible visualizar en la estimación de la exactitud del productor.

5.2. Comparar los resultados obtenidos a partir de las dos técnicas digitales, basadas en objetos y pixeles, para la identificación de cultivos de café.

Previo a la comparación de los resultados obtenidos, es necesario evaluar la exactitud de los clasificadores empleados en la fase de implementación. No se puede considerar que un proceso de clasificación es completo sin que se haya realizado una evaluación de su exactitud [84]. Con base a esta afirmación se procedió a analizar la mejor forma de validar la calidad los resultados a partir de la información disponible y que sea estándar para todas las técnicas digitales empleadas en esta investigación.

El coeficiente de validación Kappa se basa en la medición de la la exactitud obtenida por el clasificador y la posibilidad de obtener esos resultados con una clasificación correcta [6,18,84,85], sin embargo el fundamento del coeficiente es validar la similitud de dos clasificaciones de imágenes mientras que el propósito de esta evaluación es analizar la calidad de los resultados obtenidos por los clasificadores.

Otra posibilidad para la evaluación de la exactitud de los resultados obtenidos por los clasificadores es la metodología STEP, la cual se basa en los índices de similitud para los atributos Forma S, Tema T, Borde E y Posición P; enfocada en una matriz de similitud basada en objetos para evaluar las precisiones geométricas y temáticas de la clasificación de imágenes de sensores remotos [86]. Sin embargo como indica el autor de esta metodología, esta propuesta está orientada a la evaluación de exactitud obtenida por clasificadores orientados objetos, lo cual sesga la calidad de los resultados que se puedan obtener de la evaluación de los resultados de los clasificadores basados en pixeles.

Autores como [53] consideran que las medidas de exactitud de la matriz de confusión sólo se basan en resultados parciales de la misma y no aprovechan todos los datos en su totalidad, sin embargo en el marco del objetivo de esta investigación, los datos obtenidos por los tipos de exactitud de esta metodología nos permiten evaluar de forma global el clasificador y específicamente su calidad para detectar la cobertura de café en las imágenes del área de estudio.

EVALUACIÓN DE TÉCNICAS DIGITALES PARA IDENTIFICAR CULTIVOS DE CAFÉ A PARTIR DE IMÁGENES MULTIESPECTRALES

5 Discusión

Posterior a la selección de la metodología para evaluación de la exactitud, y los resultados obtenidos, se seleccionó la *Clasificación Supervisada* cono la técnica digital que permite identificar de mejor manera cultivos de café en el área de estudio de esta investigación; motivo por el cual se presentan las siguientes consideraciones adicionales en el marco de esta selección.

El análisis basado en objetos de imágen para la percepción remota incluye como datos de entrada la información espectral de la imágen, así como atributos espaciales y de textura de grupos de pixeles dentro de la imagen [52,82,87]. De igual forma el surgimiento de plataformas satelitales de imágenes con alta resolución espacial (Ikonos, Quickbird, OrbView-3, Pléiades, etc) ha llevado a un mayor uso de dicho análisis para esta clase de datos [56].

Diferentes autores [6, 50, 53, 54, 61, 88] expresan que los resultados obtenidos por la clasificación orientada a objetos son superiores con respecto a los resultados de la clasificación basada en pixeles, i.e. [6] indica una exactitud para OBIA en el mapeo de café mayor al 17% con respecto a la clasificación pasada en pixeles, [88] obtuvo una EG de 82,0% para OBIA y 66,9% basado en pixeles, [61] presenta una EG de 78,00% para OBIA y 69,14% basado en pixeles. Sin embargo en el caso de esta investigación, los resultados obtenidos nos expresan lo contrario, hay dos factores que se deben considerar al momento de analizar los resultados obtenidos por todas las técnicas:

- 1. Caficultura del área de estudio: Como se presenta en la sección 5.4, las plantaciones de café de la zona de estudio fueron sembradas utilizando como sombrío diferentes capas vegetales de mayor altura a las plantas de café, con el fin de mitigar la radiación solar sobre los cafetales. Esto adiciona una complejidad al modelo y no permitió que el clasificador pudiera distinguir mejor entre las plantaciones de café y las otras capas temáticas consideradas durante esta investigación.
- 2. Objetos a clasificar: La figura 5.1 presenta 4 imágenes sobre diferentes sectores del área de estudio con cobertura del sensor IKONOS, se resaltan los cultivos de café en rojo para facilitar su identificación y como se puede observar, no existen atributos de forma que permitan definir los objetos. Para esta investigación OBIA no brinda herramientas diferentes a las espectrales para la identificación de cultivos de café dentro del área de estudio.

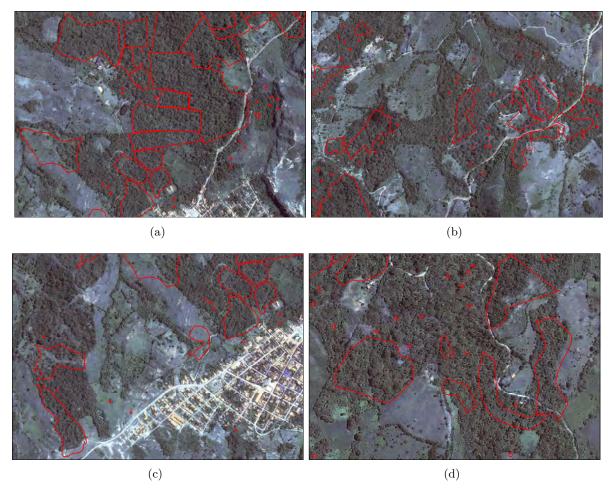


Figura 5.1: Áreas con cultivos de café dentro de la zona de estudio

5.3. Establecer si la exactitud de la identificación de cultivos de café mejora si, en lugar de emplear escenas IKONOS, se utilizan imágenes Ultracam de la misma zona de estudio.

A pesar que los resultados obtenidos en la tabla 4.14, indican que la identificación de cultivos de café sobre la imagen Ultracam con una clasificación basada en pixeles es mayor comparado con los valores obtenidos para la imagen del sensor Ikonos, el autor considera que este valor por si solo no es concluyente para dar respuesta al objetivo específico planteado al inicio de esta investigación debido a los resultados obtenidos después de realizar la evaluación de la exactitud de los clasificadores por medio de una matriz de confusión.

Como se menciona en la sección 4.5.2, la Exactitud del Usuario para la técnica digital empleada en la imagen Ultracam es de sólo $53,70\,\%$, un valor bajo que afecta la calidad de los resultados de la clasificación, teniendo en cuenta que la adquisición de imágenes aéreas y la generación de

ortofotomosaicos es un proceso muy costoso en recursos técnicos y humanos. Adicionalmente, durante la fase de implementación de esta investigación, el proceso de clasificación orientada a objetos de imagen tuvo una demanda computacional muy alta, la ejecución de cualquier versión modelo sobre la imagen Ikonos demandaba al menos 3 horas de procesamiento, mientras que en el caso de la imagen Ultracam el modelo tarda como mínimo 68 horas de procesamiento sobre un equipo con un procesador quad-core de 3.4GHz y 32GB en RAM para el modelo 1 y 33 horas para el modelo 2.

El gran beneficio del uso de ortofotomosaicos es que al ser aerotransportados por una avioneta o en la actualidad por drones, el vehículo transportador puede variar su altura de vuelo y de esta manera minimizar el impacto que puedan tener las nubes al momento de toma de la imagen, en el caso de la imagen Ikonos usada en la fase de implementación tenía una región grande en la zona sur cubierta por una nube; este problema extrínseco del cultivo de café es muy común que ocurra en varias regiones del país, puesto que el café en Colombia se siembra sobre regiones montañossas.

Existe un factor intrínseco del cultivo del café el cual afecta profundamente el uso de la percepción remota para investigaciones como esta y es al sombrío, tema que se discutirá en la sección 5.4.

5.4. Características propias del cultivo de café

Cuando se desean emplear técnicas de percepción de remota para la identificación de cultivos, es fundamental tener presente las características propias de siembra. En este caso, el cultivo de café requiere el establecimiento del sombrío según las condiciones climáticas de la zona, el tipo del suelo y la pendiente del terreno [39]. Algunos ejemplos de cafetales sembrados a la sombra en Colombia son presentados en la figura 5.2.

De acuerdo a [39], la finalidad del sombrío en el café incluye entre otros factores a:

- Reducir la temperatura ambiental y la evaporación de la superficie
- Menor calientamiento dentro del cultivo
- Menor desarrollo de arvenses agresivas.
- Control de la economía del agua.

Figura 5.2: Ejemplos de sombrío en el cultivo de café

Para el área de estudio, (los cultivos se encuentran localizados en el municipio de Dolores Tolima, sección 4.2), los cafetales se encuentran sembrados a la sombra esto se puede deber a la temperatura de la región, temperatura media de 22^o a 28^o C [89], siendo un factor que genera una mayor complejidad en el momento de identificación de cultivos por medio de técnicas de percepción remota puesto que la cobertura del café se mezcla con otras coberturas vegetales como es posible visualizar en los ejemplos presentados en la figura 5.2.

6 Conclusiones

Se pudo comprobar que el uso de técnicas digitales para la identificación de cultivos de café es posible, incluso la clasificación no supervisada permite obtener resultados aceptables (EG = 60.09%, EU=87.21% y EP = 79.16%) una vez se aplica un refinamiento a los resultados iniciales a travéz de un filtro mayoritario. Por lo cual la FNC podría involucrar dentro de sus actividades de monitoreo y actualización de cultivos el uso de estas técnicas en aquellas regiones donde consideren que la información almacenada en la base de datos del SICA se encuentre desactualizada.

Es de especial relevancia el hecho que la clasificación basada en pixeles generara mejores resultados con respecto a OBIA, i.e. la EG para la imagen IKONOS 88,15% > 68,25% de acuerdo a la tabla 4.12 o la EU para la imagen UltraCamX 53,70% > 50,45% con base a la tabla 4.13, requeriendo menos tiempo de procesamiento computacional, i.e. en el caso de la imagen UltraCamX 68 horas de procesamiento para el modelo 1 de OBIA a menos de una hora en el caso de la clasificación basada en pixeles.

En el proceso de identificación de cultivos de café con sombrío hay un ganador en las técnicas digitales empleadas durante esta investigación y es la clasificación supervisada, con una EG del 88,15 % y una EU del 86,92 %. Esta información servirá a personas interesadas en la discriminación de café en imágenes de alta resolución espacial.

A pesar de las ventajas que puede llegar a ofrecer las imágenes aéreas multiespectrales de alta resolución, por ejemplo puede cambiar la altura de vuelo del aeroplano para evitar las nubes, sus requerimientos de insfraestructura para la adquisición de las imágenes o de procesamiento computacional, debilitan la funcionalidad de este tipo de datos frente a otras fuentes como lo son imágenes satelitales de sensores como lo son Ikonos, WorldView, Pleiades o GeoEye por mencionar algunos.

Se pudo observar la necesidad de involucrar otras fuentes de datos a la imágenes satelitales/aéreas para la clasificación orientada a objetos de imagen, datos como DEMs de alta resolución espacial o LiDAR pueden ser considerados de gran relevancia al aportar información de alturas (3D), principalmente en regiones donde el café se encuentra sembrado a la sombra. Partiendo de la hipótesis que al incluir esta clase de datos, la calidad del clasificador aumenta al contar con parámetros de forma de los cultivos como lo es la altura de las plantas. Este proceso no se pudo realizar durante esta investigación debido a que en la actualidad la FNC no posee datos de alta resolución espacial de otros sensores para el área de estudio.

Es necesario incremetar la resolución espectral de los datos de sensores remotos, con el fin de evaluar de una manera detallada el comportamiento espectral del cultivo de café. El uso de imágenes hiperespectrales de alta resolucion espacial conllevará al desarrollo de mejores modelos para la identificación de cultivos de café usando el paradigma OBIA. La FNC a través de su centro de investigación (CENICAFÉ) y la Gerencia Técnica han identificado esta necesidad y

EVALUACIÓN DE TÉCNICAS DIGITALES PARA IDENTIFICAR CULTIVOS DE CAFÉ A PARTIR DE IMÁGENES MULTIESPECTRALES

6 Conclusiones

esperan adquirir en los próximos años esta clase de datos para desarrollar sus investigaciones.

Otro tipo de datos que pueden incluirse en futuras investigaciones son imágenes satelitales estereoscópicas a partir de las cuales se pueden determinar parámetros como pendiente, aspecto, altura del cultivo. En la actualidad estos datos no son recolectados por el servicio de extensión para el SICA debido al requerimiento técnico para operarlos y transportarlos, de igual forma realizar estas labores de forma permanente desviaría el enfoque que tienen los extensionistas dentro de la entidad el cual es brindar apoyo y soporte a los caficultores con el fin de obtener una caficultura sostenible.

Esta investigación ha permitido identificar a la Gerencia Técnica de la FNC otros usos que se pueden dar a las imágenes de sensores remotos de alta resolución dentro de la entidad excluyendo su uso como cartografía base para procesos de actualizació; de igual forma presenta los requerimientos de datos de sensores remotos para los proyectos de investigación que se llevan a cabo en la actualidad en la entidad para la estimación de indicadores bioclimáticos regionales del café, así mismo sirve de apoyo para la propuesta de investigación llamada Smart Coffee System la cual se encuentra en la fase inicial de financiación y que busca generar nuevos modelos de estimación de producción así como desarrollar nuevas herramientas TIC enfocadas en todos los agentes de la cadena de producción de café buscando incrementar la productividad del gremio.

Bibliografía

- [1] J. B. Campbell and R. H. Wynne, *Introduction to Remote Sensing*, 5th ed. New York, USA: The Guilford Press, 2011.
- [2] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library, 1st ed. O'REILLY, 2008, vol. 1. [Online]. Available: http://www.amazon.com/ dp/0596516134
- [3] T. Blaschke, "Continuity, complexity and change: a hierarchical geoinformation-based approach to exploring patterns of change in a cultural landscape," *Multifunctional landscapes*, 2003. [Online]. Available: http://courses.washington.edu/cfr550/pdfs/Blaschke.pdf
- [4] Y. Gong, N. Shu, J. Li, L. Lin, and X. Li, "A new conception of image texture and remote sensing image segmentation based on Markov random field," *Geo-spatial Information Science*, vol. 13, no. 1, pp. 16–23, Jan. 2010. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1007/s11806-010-0176-2
- [5] K. M. Ting, "Confusion matrix," p. 209, 2010.
- [6] S. Bolaños, "Using Image Analysis and GIS for coffee Mapping," Master Thesis, McGill University, Montreal, 2007. [Online]. Available: http://digitool.library.mcgill.ca/webclient/StreamGate?folder_id=0&dvs=1382908270256~143
- [7] DigitalGlobe, "QuickBird," DigitalGlobe, Tech. Rep., 2013. [Online]. Available: http://www.digitalglobe.com/downloads/QuickBird-DS-QB-Web.pdf
- [8] G. Y. Lee, J. Christopherson, M. Benson, and D. Moe, "USGS QUALITY ASSURANCE PLAN FOR DIGITAL AERIAL IMAGERY Certification Report for the Microsoft Vexcel UltraCamD, UltraCamX, UltraCamXp, and UltraCamXp WA Models," Department of the Interior US Geolofical Survey, Tech. Rep. May, 2010.
- [9] Vexcel Corporation, "Digital Aerial Imagery at the Cost of Film The Vexcel UltraCam Large Format Digital Aerial Camera," Vexcel Corporation, Boulder, Colorado. USA, Tech. Rep., 2004.
- [10] M. J. Smith, K. S. Qtaishat, D. W. G. Park, and A. Jamieson, "Initial Results from the Vexcel UltraCam D Digital Aerial Camera," in *XXXVII Beijing Congress*. nternational Society of Photogrammetry and Remote Sensing., 2008. [Online]. Available: http://www.isprs.org/publications/related/hannover05/paper/074-smith.pdf
- [11] Cenicafé, "Manejo de las malezas o arvenses en los cafetales," in *La Cartilla Cafetera*, Chinchiná, Colombia, 2002, ch. 9.
- [12] V. Krajíček, "Segmentation algorithms," Prag, 2011.

- [13] CEO, "Accuracy Assessment," Center for Earth Observation. Yale University, New Haven, USA, Tech. Rep., 2003. [Online]. Available: http://www.yale.edu/ceo/OEFS/Accuracy_Assessment.pdf
- [14] I. M. Hasmadi, H. Z. Pakhriazad, and M. F. Shahrin, "Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data," *Malaysian Journal of Society and Space*, vol. 5, no. 1, pp. 1–10, 2009. [Online]. Available: http://agris.fao.org/agris-search/search.do?recordID=AV2012048301
- [15] EdgewallSoftware, "RPCs in GeoTIFF," 2009. [Online]. Available: http://geotiff.maptools.org/rpc_prop.html
- [16] S. Doyle, C. Rodriguez, A. Madabhushi, J. Tomaszeweski, and M. Feldman, "Detecting prostatic adenocarcinoma from digitized histology using a multi-scale hierarchical classification approach," Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, pp. 4759–4762, 2006.
- [17] J. Carletta, "Assessing agreement on classification tasks: the kappa statistic," Computational linguistics, vol. 22, no. 2, 1996. [Online]. Available: http://dl.acm.org/citation.cfm?id= 230390
- [18] R. T. Boca and G. R. Rodríguez, "Métodos estadísticos de la evaluación de la exactitud de productos derivados de sensores remotos," Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina, Tech. Rep., 2012.
- [19] J. Lindsay, "K-means classification," 2012. [Online]. Available: http://www.uoguelph.ca/~hydrogeo/Whitebox/Help/kMeansClassification.html
- [20] Z. Lv, Y. Hu, H. Zhong, and J. Wu, "Parallel K-Means Clustering of Remote Sensing Images Based on MapReduce," *Proceeding WISM'10 Proceedings of the 2010 international conference on Web information systems and mining*, pp. 162–170, 2010. [Online]. Available: http://www.geog.ucsb.edu/~hu/papers/ParallelK.pdf
- [21] JARS, "Image Processing Classification," in *Remote Sensing Note*. Tokyo, Japan: Japan Association on Remote Sensing, 1993.
- [22] ITC, "Spatial data analysis: neighbourhood and connectivity," in *Ilwis 3.0 User's Guide*, Twentte, NL, 2001, ch. 9, pp. 351–385.
- [23] G. Rose, "Pan Sharpening," 2005. [Online]. Available: http://www.imstrat.ca/uploads/files/brochures/pansharpening.pdf
- [24] H. Xie, "Multispectral Remote Sensing," San Antonio, Texas. USA, pp. 1–47, 2007. [Online]. Available: http://www.utsa.edu/lrsg/Teaching/EES5053/Lecture/L5-6-mullti.pdf
- [25] N. Flyer, G. B. Wright, and B. Fornberg, "Radial basis function-generated finite differences: A mesh-free method for computational geosciences," *Handbook of Geomathematics* ..., pp. 1–34, 2014. [Online]. Available: http://amath.colorado.edu/faculty/fornberg/Docs/2014_FWF_RBF_Geoscience_Springer_accepted.pdf
- [26] Government of Canada, Fundamentals of Remote Sensing. The Canada Centre for Mapping and Earth Observation, 2013. [Online]. Available: http://www.ccrs.nrcan.gc.ca/resource/tutor/fundam/index_e.php

- [27] I. Lizarazo, "Caracterización de la condición de la vegetación usando sensores próximos y remotos," 2013, pp. 1–13.
- [28] O. Ivanciuc, "Applications of support vector machines in chemistry," in *Reviews in computational chemistry*, K. B. Lipkowitz and T. R. Cundari, Eds., Weinheim, 2007, vol. 23, ch. 6, pp. 291–400. [Online]. Available: http://www.ivanciuc.org/Files/Reprint/Ivanciuc_Applications_of_Support_Vector_Machines_in_Chemistry.pdf
- [29] J. Blanco, J. Terrón, F. Pérez, F. Galea, J. Salgado, F. Moral, J. Marques da Silva, and L. Silva, "Variabilidad espacial y temporal del vigor vegetativo en viñedo sin restricciones hídricas en la demanda evapotranspirativa," in VII CONGRESO IBÉRICO DE AGROIN-GENIERIA Y CIENCIAR HORTICOLAS, Madrid, 2013.
- [30] D. J. Mulla, "Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps," *Biosystems Engineering*, vol. 114, no. 4, pp. 358–371, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.biosystemseng.2012.08.009
- [31] A. Rai, "REMOTE SENSING AND GIS APPLICATIONS IN AGRICULTURE," Indian Agricultural Statistics Research Institute, New Delhi, Tech. Rep., 2003. [Online]. Available: http://iasri.res.in/ebook/EB_SMAR/e-book_pdffiles/ManualIV/4-RemoteSensingandGIS.pdf
- [32] W. S. Lee, V. Alchanatis, C. Yang, M. Hirafuji, D. Moshou, and C. Li, "Sensing technologies for precision specialty crop production," *Computers and Electronics in Agriculture*, vol. 74, no. 1, pp. 2–33, 2010.
- [33] Q. An, B. Yang, and X. Jiao, "Data mining technology for crop identification using remote sensing," Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, vol. 23, no. 8, pp. 181–186, 2007. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-34648827219&partnerID=tZOtx3y1
- [34] F. Löw and G. Duveiller, "Defining the spatial resolution requirements for crop identification using optical remote sensing," *Remote Sensing*, vol. 6, pp. 9034–9063, 2014.
- [35] C. Atzberger, "Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs," *Remote Sensing*, vol. 5, pp. 949–981, 2013.
- [36] B. Qiu, Z. Fan, M. Zhong, Z. Tang, and C. Chen, "A new approach for crop identification with wavelet variance and JM distance," *Environmental Monitoring and Assessment*, vol. 186, no. 11, pp. 7929–7940, 2014. [Online]. Available: http://dx.doi.org/10.1007/s10661-014-3977-1
- [37] X. Liu and Y. Bo, "Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral Images and LiDAR Data," *Remote Sensing*, vol. 7, no. iii, pp. 922–950, 2015. [Online]. Available: http://www.mdpi.com/2072-4292/7/1/922/
- [38] DANE, "Boletín técnico Comercio Exterior-Exportaciones," National Administrative Department of Statistics (DANE), Bogotá, Colombia, Tech. Rep., 2015.
- [39] Cenicafé, "Descripción del proceso productivo y del beneficio del café. Guía tecnológica del cultivo." in *Guía Ambiental para el Sector Cafetero*. Chinchiná, Colombia: Colombian Centre of Coffee Research, 2006, ch. Descripció, pp. 51–80.

- [40] FNC, "La Gente del Café," 2010. [Online]. Available: http://www.cafedecolombia.com/particulares/es/la_tierra_del_cafe/la_gente_del_cafe/
- "Colombian Coffee Insider Coffee Driving Force the is Guarantee of Social Stability and Peace," [Onli-Economy and 2013. nel. Available: http://www.federaciondecafeteros.org/algrano-fnc-en/index.php/comments/ the_coffee_sector_is_a_driving_force_of_the_economy_and_a_guarantee_of_soci/
- [42] —, "About us," 2014. [Online]. Available: http://www.federaciondecafeteros.org/particulares/en/quienes_somos
- [43] ESRI, "Farming the Future GIS for Agriculture, Vol 2," ESRI, Redlands, California, Tech. Rep. August, 2013.
- [44] J. García, "Evolución de la distribución de las fincas cafeteras HACÍA UNA REGIONALIZACIÓN DE LA CAFICULTURA COLOMBIANA," Federación Nacional de Cafeteros, Bogotá, Colombia, Tech. Rep., 1997. [Online]. Available: http://www.federaciondecafeteros.org/static/files/3.evolucionfincascafeteras.pdf
- [45] N. A. Brunsell, P. P. B. Pontes, and R. A. C. Lamparelli, "Remotely Sensed Phenology of Coffee and Its Relationship to Yield," 2009.
- [46] A. Jefersson, G. Philippe-henri, P.-f. Sylvie, T. Ricardo S., and F. a. Alexandre Xavier, "Multi-Scale Classification of Remote Sensing Images," *Geoscience and Remote Sensing*, *IEEE Transactions on*, vol. 50, pp. 3764–3775, 2012.
- [47] T. Bernardes, M. A. Moreira, M. Adami, A. Giarolla, and B. F. F. Rudorff, "Monitoring Biennial Bearing Effect on Coffee Yield Using MODIS Remote Sensing Imagery," *Remote Sensing*, vol. 4, no. 12, pp. 2492–2509, Aug. 2012. [Online]. Available: http://www.mdpi.com/2072-4292/4/9/2492/
- [48] H. Nagendra, "Estimating Landscape Pattern From Supervised and Unsupervised Classification: Studies in the Western Ghats, India," *International Archives of Photogrammetry and Remote Sensing*, vol. XXXIII, no. B7, pp. 955–961, 2000.
- [49] X. Liu, "Supervised Classification and Unsupervised Classification," Harvard Smithsonian Center for Astrophysics, Cambridge, Massachusetts, Tech. Rep., 2003. [Online]. Available: http://www.cfa.harvard.edu/~xliu/presentations/SRS1_project_report.PDF
- [50] R. C. Weih and N. D. Riggan, "Object-based classification vs. pixel-based classification: comparitive importance of multi-resolution imagery," The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,, vol. XXXVIII, no. 4-C7, 2008.
- [51] T. Blaschke, "Object based image analysis for remote sensing," *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 65, no. 1, pp. 2–16, Jan. 2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0924271609000884
- [52] D. Liu and F. Xia, "Assessing object-based classification: advantages and limitations," Remote Sensing Letters, vol. 1, no. December 2010, pp. 187–194, 2010.

- [53] F. A. Rodríguez Vásquez, "Metodología para detectar cambios en el uso de la tierra utilizando los principios de la clasificación orientada a objetos, estudio de caso piedemonte de Villavicencio, Meta Metodología para detectar cambios en el uso de la tierra utilizando los princip," Tesis de Maestría, Universidad Nacional de Colombia, 2011.
- [54] Y. Gao and J. F. Mas, "A Comparison of the Performance of Pixel Based and Object Based Classifications over Images with Various Spatial Resolutions," *Online journal of earth sciences*, vol. XXXVIII, no. 4-C1, 2008. [Online]. Available: http://docsdrive.com/pdfs/medwelljournals/ojesci/2008/27-35.pdf
- [55] J. A. dos Santos, P. H. Gosselin, S. Philipp-foliguet, R. da Santos Torres, and A. X. Falcão, "Interactive Multiscale Classification of High-Resolution Remote Sensing Images," vol. 6, no. 4, pp. 2020–2034, 2013. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6412736
- [56] P. Aplin and G. M. Smith, "Advances in Object-Based Image Classification," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 725–728, 2008. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.183.9922&rep=rep1&type=pdf\$\delimiter"026E30F\$nhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.183.9922
- [57] T. Blaschke, G. J. Hay, M. Kelly, S. Lang, P. Hofmann, E. Addink, R. Queiroz Feitosa, F. van der Meer, H. van der Werff, F. van Coillie, and D. Tiede, "Geographic Object-Based Image Analysis Towards a new paradigm," *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 87, pp. 180–191, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014
- [58] F. J. Estrada and A. Jepson, "Quantitative Evaluation of a Novel Image Segmentation Algorithm," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 2, pp. 1132–1139, 2005. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1467570
- [59] A. Jepson, "Image Segmentation," Department of Computer Science. University of Toronto, Toronto, Canada, Tech. Rep., 2007. [Online]. Available: http://www.cs.toronto.edu/~jepson/csc2503/segmentation.pdf
- [60] F. J. Estrada and A. D. Jepson, "Benchmarking Image Segmentation Algorithms," International Journal of Computer Vision, vol. 85, no. 2, pp. 167–181, May 2009. [Online]. Available: http://link.springer.com/10.1007/s11263-009-0251-z
- [61] T. Whiteside and W. Ahmad, "A Comparison of Object-Oriented and Pixel-Based Classification Methods for Mapping Land Cover in Northern Australia," *Proceedings of SSC2005 Spatial intelligence innovation and praxis The national biennial Conference of the Spatial Sciences Institute*, no. September, pp. 1225–1231, 2005. [Online]. Available: http://eprints.batchelor.edu.au/60/
- [62] M. Baatz and A. Schaepe, "Multiresolution Segmentation: an optimization approach for high quality multi-scale image segmentation," Angewandte Geographische Informationsverarbeitung XII. Beiträge zum AGIT-Symposium Salzburg 2000, Karlsruhe, Herbert Wichmann Verlag, pp. 12–23, 2000.

- [63] B. Govaerts and N. Verhulst, "The normalized difference vegetation index (NDVI) Green-Seeker handheld sensor: Toward the integrated evaluation of crop management Part A: Concepts and case studies," CIMMYT, Mexico, D.F., Tech. Rep., 2010.
- [64] J. Nowatzki, R. Andres, and K. Kyllo, "Agricultural Remote Sensing Basics," NDSU Extension Service. North Dakota State University, Fargo, North Dakota. USA, Tech. Rep. April, 2004.
- [65] E. M. Wood, A. M. Pidgeon, V. C. Radeloff, and N. S. Keuler, "Image texture as a remotely sensed measure of vegetation structure," *Remote Sensing of Environment*, vol. 121, pp. 516–526, Jun. 2012. [Online]. Available: http://linkinghub.elsevier.com/retrieve/ pii/S0034425712000156
- [66] P. D. Culbert and A. M. Pidgeon, "The impact of phenological variation on texture measures of remotely sensed imagery," *Selected Topics in ...*, vol. 2, no. 4, pp. 299–309, Dec. 2009. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper. htm?arnumber=4956979http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4956979
- [67] E. M. Tuttle, R. R. Jensen, A. A. Formica, and R. A. Gonser, "Using remote sensing image texture to study habitat use patterns: a case study using the polymorphic white-throated sparrow (Zonotrichia albicollis)," Global Ecology and Biogeography, vol. 15, no. 4, pp. 349–357, Jul. 2006. [Online]. Available: http://doi.wiley.com/10.1111/j.1466-822X.2006.00232.x
- [68] Intergraph, "ERDAS Field Guide," Intergraph Corporation, Huntsville, AL, Tech. Rep. October, 2013.
- [69] F. Tsai, E. K. Lin, and K. Yoshino, "Spectrally segmented principal component analysis of hyperspectral imagery for mapping invasive plant species," *International Journal of Remote Sensing*, vol. 28, no. 5, pp. 1023–1039, 2007. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/01431160600887706
- [70] R. Croome, "The potential for satellite remote sensing to monitor coffee, tea, cocoa and coconut plantings in Papua New Guinea," in *Designing monitoring systems for smallholder agriculture in Papua New Guinea; working paper no. 2.* Canberra, Australia: ACIAR, 1989.
- [71] GLOBE, "Land Cover / Biology Investigation," The GLOBE Program, Tech. Rep., 2005. [Online]. Available: http://www.globe.gov/documents/10157/380993/land_chapter.pdf
- [72] S. K. Seelan, S. Laguette, G. M. Casady, and G. A. Seielstad, "Remote sensing applications for precision agriculture: A learning community approach," *Remote Sensing of Environment*, vol. 88, no. 1-2, pp. 157–169, 2003.
- [73] J. T. Bailey and C. G. Boryan, "Remote Sensing Applications in Agriculture at the USDA National Agricultural Statistics Service," 2010. [Online]. Available: http://typo3.fao.org/fileadmin/templates/ess/documents/meetings_and_workshops/ICAS5/PDF/ICASV_2.1_048_Paper_Bailey.pdf
- [74] P. J. Murillo Sandoval and J. A. Carbonell González, Principios y aplicaciones de la percepción remota en el cultivo de la caña de azúcar en Colombia. Cali, Colombia: Cenicaña, 2012. [Online]. Available: http://orton.catie.ac.cr/cgi-bin/wxis.exe/?IsisScript= IICACR.xis&method=post&formato=2&cantidad=1&expresion=mfn=034406

- [75] M. Chica-Olmo and F. Abarca-Hernandez, "Computing geostatistical image texture for remotely sensed data classification," *Computers & Geosciences*, vol. 26, pp. 373–383, 2000. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0098300499001181
- [76] D. Winter, "Using Normalized Difference Vegetation Index (NDVI) as an Indicator of Cheatgrass (Bromus tectorum) Infestations in Skull Valley, Utah," *Applied Remote Sensing*, 2003.
- [77] M. A. Ahmed and W. A. Ahmad, "Using Normalized Difference Vegetation Index (NDVI) To Assessment The Changes Of Vegetations Cover In Surrounding Area Of Himreen Lake," *Iraqui Journal of Science*, vol. 54, no. 4, pp. 895–901, 2013.
- "Object based [78] B. Crase and C. Hempel, land cover mapping Groo-Eylandt: tool reconnaissance and surveys," Pro-Α for land based 2005âÅSApplications ofNARGISintropical2005.Onlinel. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle: OBJECT+BASED+LAND+COVER+MAPPING+FOR+GROOTE+EYLANDT+: +A+TOOL+FOR+RECONNAISSANCE+AND+LAND+BASED+SURVEYS#0
- [79] G. Meinel and M. Neubert, "A comparison of segmentation programs for high resolution remote sensing data," *International Archives of Photogrammetry and Remote Sensing*, pp. 1097–1105, 2004. [Online]. Available: http://faculty.wwu.edu/~wallin/envr442/pdf_files/meinel_and_neubert_2006.pdf
- [80] QGIS, "QGIS," 2013. [Online]. Available: http://www.qgis.org/en/site/about/index.html
- [81] P. N. Happ, R. S. Ferreira, and C. Bentes, "Multiresolution segmentation: a parallel approach for high resolution image segmentation in multicore architectures," The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII, no. 4/C7, 2010. [Online]. Available: http://www.isprs.org/proceedings/XXXVIII/4-C7/pdf/Happ_143.pdf
- [82] S. Roostaei, S. Alavi, M. Nikjoo, and K. Valizadeh Kamran, "Evaluation of Object-Oriented and Pixel Based Classification Methods for extracting changes in urban area." *International Journal of Geometrics and Geosciences*, vol. 2, no. 3, pp. 738–749, 2012.
- [83] F. Fierens and P. L. Rosin, "Filtering remote sensing data in the spatial and feature domains," SPIE Conf. Image and Signal Processing for Remote Sensing, vol. 2315, pp. 472–482, 1994.
- [84] D. Gomez and J. Montero, "Determining the accuracy in image supervised classification problems," *EUSFLAT*, vol. 1, no. 1, pp. 342 349, 2011. [Online]. Available: http://www.atlantis-press.com/php/paper-details.php?from=table+of+contents&id=2288&querystr=publication%3DEUSFLAT
- [85] G. D. De Leon Mata, A. Pinedo Alvarez, and J. H. Martinez Guerrero, "Aplicación De Sensores Remotos En El Análisis De La Fragmentación Del Paisaje En Cuchillas De La Zarca, México," *Investigaciones Geográficas, Boletín del Instituto de Geográfica, UNAM*, vol. 84, pp. 42–53, 2013. [Online]. Available: http://www.revistas.unam.mx/index.php/rig/article/view/36568

- [86] I. Lizarazo, "Accuracy assessment of object-based image classification: another STEP," International Journal of Remote Sensing, vol. 35, no. 16, pp. 6135–6156, Aug. 2014. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.943328
- [87] E. Sánchez, R. Díaz, J. Chávez, and A. Granados, "GIS Improved Object-Based Classification for Land Use / Cover Change Detection in a Human Altered Deciduous Forest Environment," in ASPRS Annual Conference, Baltimore, USA, 2009.
- [88] N. Riggan Jr and R. Weih Jr, "A comparison of pixel-based versus object-based land use/land cover classification methodologies," *Journal of the Arkansas Academy of Science*, vol. 63, pp. 145–152, 2009. [Online]. Available: http://libinfo.uark.edu/aas/issues/2009v63/v63a16.pdf
- [89] Dolores, "Nuestro Municipio," 2014. [Online]. Available: http://www.dolores-tolima.gov.co