

SCREEN CAPTUR WELCOME

Barcelona & online | 2–6 September 2024

Understanding the impact of varying geometry level of detail in multi-direction urban RANS simulations tailored for urban air-mobility viability.

Akshay Patil & Clara García-Sánchez

3DGeoinformation Research Group, Faculty of Architecture & the Built Environment,

Delft University of Technology

SCREEN CAPTURI WELCOME

Barcelona & online | 2–6 September 2024

Understanding the impact of varying geometry level of detail in multi-direction urban RANS simulations tailored for urban air-mobility viability.

Akshay Patil & Clara García-Sánchez

3DGeoinformation Research Group, Faculty of Architecture & the Built Environment,

Delft University of Technology

This Project has received funding from the European Union's HORIZON Research and Innovation Programme under Grant Agreement number 101096698

Carbon Footprint Statement

This work used the DelftBlue supercomputer and had an estimated footprint of 1051kg CO₂-equivalent (at least if not higher) using the Green Algorithms (http://calculator.green-algorithms.org/). This is equivalent to taking 0.65 flight(s) from New York (U.S.) to Melbourne (Australia).

Motivation

Motivation

TUDelft 3Dgeoinfo

Motivation

- Car-centric built environment
 - SO_x & NO_x concentration worsen (*Wolf* et al. 2020)
- EU Response: Lower CO₂ acceptable limits (*Fit for 55, Council of the EU 28/03/2023*)
- Vertical extensions Wind loading concern

TUDelft 3Dgeoinfo

Motivation

- Car-centric built environment
 - SO_x & NO_x concentration worsen (*Wolf* et al. 2020)
- EU Response: Lower CO₂ acceptable limits (*Fit for 55, Council of the EU 28/03/2023*)
- Vertical extensions Wind loading concern

Potential (Partial) Solution?

UAV's as alternatives to last-mile transit (*Elsayed & Mohamed, 2020; Lemardelé et al. 2021; Cui et al.,*

Challenges*

- o Turbulent flow in urban built environments
 - o Large dependent parameter space
 - Flow response is complex

 $\mathcal{L}(\mathcal{D}_i)$ 0 =

 $\mathcal{P}_i \sim \mathcal{O}(10^1)$

*To list a few

Impact of Level of Detail on Urban Flow Simulations, Patil & García-Sánchez (2024)

Slide 4 of 9

Challenges*

- o Turbulent flow in urban built environments
 - o Large dependent parameter space
 - Flow response is complex
- Characterising urban morphology
 - Fairness in comparison metrics
 - A wide variance in typologies


```
\mathcal{P}_i \sim \mathcal{O}(10^1)
```


*To list a few

Impact of Level of Detail on Urban Flow Simulations, Patil & García-Sánchez (2024)

Slide 4 of 9

TUDelft 3Dgeoinfo

Challenges*

- o Turbulent flow in urban built environments
 - o Large dependent parameter space
 - Flow response is complex
- Characterising urban morphology
 - Fairness in comparison metrics
 - A wide variance in typologies

Methodology

o Geometric level of detail (Buildings)

$$Q = \mathcal{L}(\mathcal{D}_i)$$

$$\mathcal{P}_i \sim \mathcal{O}(10^1)$$

*To list a few

TUDelft 3Dgeoinfo

Delfshaven 0" 270" 270" 225" 180"

refmc

Challenges*

- o Turbulent flow in urban built environments
 - o Large dependent parameter space
 - Flow response is complex
- Characterising urban morphology
 - Fairness in comparison metrics
 - A wide variance in typologies

Methodology

- o Geometric level of detail (Buildings)
- o Wind incidence angle

$Q = \mathcal{L}(\mathcal{D}_i)$

$\wp_i \sim \mathcal{O}(10^1)$

TUDelft 3Dgeoinfo

<u>retm</u>

Challenges*

- o Turbulent flow in urban built environments
 - o Large dependent parameter space
 - Flow response is complex
- o Characterising urban morphology
 - Fairness in comparison metrics
 - $\circ~$ A wide variance in typologies

Methodology

- o Geometric level of detail (Buildings)
- \circ Wind incidence angle

Reynolds-Averaged Navier-Stokes framework Neutral Boundary Layer $Q = \mathcal{L}(\mathcal{D}_i)$

```
\mathcal{P}_i \sim \mathcal{O}(10^1)
```

*To list a few

Delfshaven 0* 270° 225° 135* 180° Understand and quantify the hydrodynamic response as a function of building resolution and wind incidence

Challenges*

- o Turbulent flow in urban built environments
 - $\circ~$ Large dependent parameter space
 - Flow response is complex
- o Characterising urban morphology
 - Fairness in comparison metrics
 - A wide variance in typologies

Methodology

- o Geometric level of detail (Buildings)
- $\circ~$ Wind incidence angle

Reynolds-Averaged Navier-Stokes framework Neutral Boundary Layer $Q = \mathcal{L}(\mathcal{D}_i)$

```
\mathcal{P}_i \sim \mathcal{O}(10^1)
```

*To list a few

Impact of Level of Detail on Urban Flow Simulations, Patil & García-Sánchez (2024)

Slide 4 of 9

Steady-State RANS equations – Finite Volume + SIMPLE

Steady-State RANS equations – Finite Volume + SIMPLE

Impact of Level of Detail on Urban Flow Simulations, Patil & García-Sánchez (2024)

Slide 5 of 9

Steady-State RANS equations – Finite Volume + SIMPLE

Impact of Level of Detail on Urban Flow Simulations, Patil & García-Sánchez (2024)

Slide 5 of 9

Steady-State RANS equations – Finite Volume + SIMPLE

- Two equation closure (K-Epsilon)
- Best Practice Guidelines for mesh design (Franke et al., 2011; Blocken, 2015)

Building reconstruction using City4CFD (Paden et al., 2022)

Steady-State RANS equations – Finite Volume + SIMPLE

- Two equation closure (K-Epsilon)
- Best Practice Guidelines for mesh design (Franke et al., 2011; Blocken, 2015)
- Independent grid convergence analysis for the four cases
- Neutral Boundary Layer wall function for Terrain
- Total of 4 x 72 = 288 simulations

TUDelft 3Dgeoinfo

Building reconstruction using City4CFD (Paden et al., 2022)

Steady-State RANS equations – Finite Volume + SIMPLE

- Two equation closure (K-Epsilon)
- Best Practice Guidelines for mesh design (Franke et al., 2011; Blocken, 2015)
- Independent grid convergence analysis for the four cases
- Neutral Boundary Layer wall function for Terrain
- Total of 4 x 72 = 288 simulations

80

600

200

-200

-400

-200

0

 $x_1 \ [m]$

200

 $x_2 \ [m]$

LoD3.

LoD3.0

LoD3.2

Impact of Level of Detail on Urban Flow Simulations, Patil & García-Sánchez (2024)

LoD3 3

Results: Average Velocity

Case: TU Delft campus

Results: Average Velocity

Case: Den Haag (The Hauge)

Impact of Level of Detail on Urban Flow Simulations, Patil & García-Sánchez (2024)

Slide 6 of 9

Case: TU Delft campus

Impact of Level of Detail on Urban Flow Simulations, Patil & García-Sánchez (2024)

1.0

TUDelft 3Dgeoinfo

Case: TU Delft campus

Impact of Level of Detail on Urban Flow Simulations, Patil & García-Sánchez (2024)

Slide 7 of 9

Case: Den Haag (The Hauge)

$$P_r \equiv P(U^* > \alpha \cap k^* > \beta) \qquad \qquad U^* = \frac{|U_i|}{U_{\infty}} \qquad \qquad k^* = \frac{k}{U_{\infty}^2}$$

refmap

Case: Den Haag (The Hauge)

$$P_r \equiv P(U^* > \alpha \cap k^* > \beta) \qquad \qquad U^* = \frac{|U_i|}{U_{\infty}} \qquad \qquad k^* = \frac{k}{U_{\infty}^2}$$

refmap

refmap

Conclusions

- The Level of Detail (LoD) has a large effect on the hydrodynamic response
 - Industry-standard LoD 1.2 massively underpredicts the risk
 - Average velocity is not a good metric for comparison
- Angular resolution can introduce systematic bias

Conclusions

- The Level of Detail (LoD) has a large effect on the hydrodynamic response
 - Industry-standard LoD 1.2 massively underpredicts the risk
 - Average velocity is not a good metric for comparison
- Angular resolution can introduce systematic bias

Future Work

- Baseline 1-degree resolution dataset for validity checks
- Multi-fidelity method for at-scale or reduced-scale computational framework

Thank you!

