
GenSDF: An MPI-Fortran based signed-distance-field

generator for computational fluid dynamics applications.

Akshay Patila, Udhaya Chandiran Krishnan Paranjothib, Clara
Garćıa-Sáncheza

a3DGeoinformation Research Group, Delft University of Technology, a.l.patil@tudelft.nl
bWind Energy Section, Flow Physics and Technology Department, Faculty of Aerospace

Engineering, Delft University of Technology

Abstract

This paper presents a highly efficient signed-distance field (SDF) generator
designed specifically for computational fluid dynamics (CFD) workflows. Our
approach combines the parallel computing power of Message Passing Inter-
face (MPI) with the performance advantages of modern Fortran, enabling
precise and scalable computations for complex geometric domains. The al-
gorithm focuses on localized distance calculations to minimize computational
overhead, ensuring efficiency across multiple processors. An adjustable input
stencil width allows users to balance computational cost with the desired level
of accuracy in distance approximation. Additionally, the generator supports
the widely used Wavefront OBJ format, utilizing its encoded outward normal
information to achieve accurate boundary definitions. Performance bench-
marks demonstrate the tool’s ability to handle large-scale 3D models with
high fidelity and reduced computational demands. This makes it a practical
and effective solution for CFD applications that require fast, reliable distance
field computations while accommodating diverse geometric complexities.

Keywords: Signed-Distance-Field, Computational Fluid Dynamics, MPI

Preprint submitted to SoftwareX November 30, 2024

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5042856

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Metadata

Nr. Code metadata Description
C1 Current code version v0.1
C2 Permanent link to code/repository

used for this code version
https://github.com/

AkshayPatil1994/GenSDF

C3 Permanent link to Reproducible
Capsule

NA

C4 Legal Code License AGPL-3.0 license
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
MPI + Fortran

C7 Compilation requirements, operat-
ing environments & dependencies

gfortran and MPI library

C8 If available Link to developer docu-
mentation/manual

https://github.com/

AkshayPatil1994/GenSDF

C9 Support email for questions a.l.patil@tudelft.nl

Table 1: Code metadata details and support information along with the link to the code
repository.

1. Motivation and significance

Scale resolving turbulent flow simulations around complex objects have be-
come increasingly accessible for engineering problems by virtue of the in-
creasing computational power [1, 2, 3, 4]. While there exist multiple classes
of methods that can be used to introduce the complex objects within the
flow, such as body-conforming grids as shown in figure 1 [3, 5], the use of the
immersed boundary method (IBM) has increasingly become popular due to
its efficient underlying algorithm on regular grids [6, 7]. Since IBM does not
require the grid to conform to the object, the underlying grid data structure
can leverage the Cartesian grid’s simplicity and use efficient pressure solvers
for the governing equations [8]. For complex objects, it becomes essential to
correctly locate the boundary of the immersed object on the computational
lattice/grid, which can be done through the signed distance field (SDF). This
paper presents an efficient and scalable SDF computation algorithm that can
be used for geometries stored using the OBJ file format.

2

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5042856

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

https://github.com/AkshayPatil1994/GenSDF
https://github.com/AkshayPatil1994/GenSDF
https://github.com/AkshayPatil1994/GenSDF
https://github.com/AkshayPatil1994/GenSDF


(a) (b)

Figure 1: (a) Body conforming mesh used in typical computational fluid dynamics appli-
cations (b) Immersed Boundary Method over a regular Cartesian grid.

While SDF generators are not new [9], the closed-source nature of the existing
ones has limited the accessibility for applications within the CFD community.
Additionally, as the problem size for scale-resolving simulations grows, single
Graphics Processing Unit (GPU) implementations can be severely limited
by the total available memory per GPU. Thus, in this work, we use the dis-
tributed memory paradigm allowed by Message-Passing-Interface (MPI) to
circumvent this limitation and allow for a scalable algorithm beyond billions
of grid points and surface triangulation corresponding to the geometry.

2. Software description

The GenSDF software is a general-purpose code developed to accurately
and efficiently obtain the SDF of an arbitrary triangulated geometry over a
Cartesian grid. GenSDF was primarily motivated by the need for a scalable
and distributed memory (MPI-based) tool to obtain SDFs for computational
grid sizes in the order of billions.

2.1. Software architecture

The GenSDF software is written in modern Fortran, allowing for a simple
yet computationally efficient framework to develop and maintain the code.
The distributed memory parallelism is achieved through the MPI interface,
where the computational grid is decomposed using linear decomposition along
the x-coordinate axis into N chunks, where N corresponds to the number
of MPI ranks used for the parallel version of the code. Figure 2 shows a
simple flowchart detailing the central components of the software presented
in this paper. As detailed in the second step of the algorithm, the bounding
box coordinates of the triangulated geometry can be used to co-locate it on

3

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5042856

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



the computational grid. Using this information, a large positive distance
is assigned to the grid points outside the bounding box (referred to as B-
Box in Figure 2) since these points are known in advance to be outside the
geometry. This bounding box methodology allows for correctly excluding the
computationally expensive distance query for points that are known to be
outside the geometry. The bounding box also includes a user-specified stencil
buffer (sb), where sb is the number of computational grid points around the
bounding box.

Computational Grid Geometry

STEP 1: Parsing Into Memory

Bounding Box

STEP 2: Tag B-Box on Grid

Co-locate B-Box on Grid

Parallelize

STEP 3: Decompose workload

0 1 2 3

STEP 4: Compute SDF

Gather

Figure 2: Flowchart of the key steps in the code. In step 3, the numbers represent the MPI
rank IDs. The flowchart presents a 2-dimensional example of the bounding box; however,
the code works in 3 dimensions.

After the bounding box is co-located in Step 2, the requisite B-Box is decom-
posed based on the user-requested MPI ranks, as detailed in Step 3. Here,
the domain decomposition is carried out over the streamwise direction, usu-
ally the longest in such flow simulations. Once the domain decomposition
is done, individual MPI ranks compute the local distance queries for the
surface triangles within their individual coordinate extents. Finally, Step 4
gathers the decomposed domain by handling the boundary values and file
write operations.

2.2. Software functionalities

The software has three core functionalities:

• Parse OBJ geometry and load it into memory

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5042856

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



• Calculate the distance between the query point and the triangle module

• Parallelise the workload for efficient and accurate computations

Within these core functionalities, the software first parses the input file where
the user provides information about the input geometry, input grid type, the
default distance value for points outside the geometry, and the stencil buffer.
This user input file parser is contained in the subroutine called read inputfile.
Once the input data is known, the computational grid is parsed into mem-
ory on each of the MPI ranks using the read cans grid subroutine. Subse-
quently, the surface triangulated geometry is parsed into the memory using
the read obj subroutine that loads the vertex, vertex normal (assumed to be
pointing outwards), and face data. Once the geometry is loaded to memory,
the bounding box corresponding to the geometry is calculated which is then
used to co-locate the extent over which the distance is queried.

The computationally intensive workload is housed in the subroutine titled
compute scalar distance face. The algorithm to compute the signed distance
is designed to scale the computational effort based on the number of vertices
in the triangulated geometry. Specifically, in this implementation, the out-
ermost loop iterates over the total number of faces within the triangulated
geometry. As presented in figure 3, each triangular face on the surface geom-
etry is composed of three vertices where an average surface normal pointing
outwards is also defined (not shown in the figure). Knowing the x, y, and z
coordinates of the vertices, a face-local bounding box can be obtained readily
as the computational grid (shown with the blue grid lines) constitute a sim-
ple Cartesian structure. This bounding box includes all the candidate grid
points where a distance calculation is considered and excludes all the other
points that are relatively further away from the triangulated face under con-
sideration. Once the face-local bounding box is known, the distance between
the point and the triangular face is calculated using the well-established al-
gorithm [10]. This approach not only localises the distance query, but also
allows for an efficient parallelization strategy as there is no global communi-
cation required when such a distance query is requested. Since the outer loop
iterated over the total number of faces in the triangulated surface, there are
some limitations that must be observed in this algorithm. Geometries with
long and slender triangles may render inaccurate and de-generate SDF, this
is especially true for geometries that constitute a large collection of blocks
(cubes such as buildings). Additionally, for test cases where the underlying
computational grid is relatively much finer when compared to the surface
triangulation, there can be instances where certain computational points can

5

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5042856

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



render de-generate SDF. A simple fix for both these scenarios is to refine
the surface triangulation using a meshing tool or the instructions provided
within the published repository.

(𝑥1, 𝑦1, 𝑧1)

(𝑥2, 𝑦2, 𝑧2)

(𝑥3, 𝑦3, 𝑧3)

𝑥

𝑦
𝑧

Sketch Not to Scale

Figure 3: Example sketch of the triangulated surface geometry overlaid onto the compu-
tational grid (2D example). The three filled-red circles correspond to the vertices of the
triangular face denoted by the solid black lines.

Since the user is allowed to specify a stencil buffer around the geometry
where the distance is calculated, the default initialization for the SDF value
does not correctly tag the values inside the geometry as negative. In this
software, we make use of a simple 3D flood fill algorithm that assigns a large
negative value of −103 for internal values bounded by the SDF. Finally,
once the SDF is calculated on the individual MPI ranks, the gather array
subroutine collects the decomposed parts of the array and stacks it into a
single contiguous array which is then written out to a binary file format for
further use within the CFD solver.

3. Illustrative examples

A typical output of the program when compiled using the openmpi Fortran
compiler can be seen in figure 4. By default, the code assumes that the grid
is staggered such that the locations of u, v, w, and p (scalar) are different
thus generating four different arrays corresponding to the location of the
variables. The code also provides an indication of the expected minimum
memory required to run the specific program based on the total number of

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5042856

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



 

 

Figure 4: Example output of the MPI-enabled code.

arrays initialised by the software. This is important when the problem size
is large and the user needs to parse the data into memory.

The left panel in figure 5 shows two clipped planes with the color denoting
the distance field while the white region is marked by the input geometry.
The right panel shows the region of the computational grid where distance
is calculated (marked in yellow) and the black region marks the flood-filled
default value of −103. The gray region in the right panel has a default value
of 102 and the distance is not calculated here as it is known a-priori to be
outside the geometry.

Figure 5: Signed Distance Field calculated using the software for the Stanford Armadillo
(scaled) geometry.

7

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5042856

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



4. Impact

The development of this software has a significant impact on enabling a
pre-processing workflow for scale-resolving turbulent flow simulations around
complex objects for problem sizes in the order of billions of computational
grid cells. GenSDF is an open-source software that allows computational
fluid dynamicists to seamlessly incorporate complex geometries into their
solvers. The distributed memory implementation ensures scalability across
multiple CPUs, eliminating memory limitations as a bottleneck and enabling
its application to extremely large-scale simulations. While originally designed
to integrate with the well-validated scale-resolving solver CaNS [8], GenSDF
is highly adaptable and can be employed with other solvers requiring signed
distance functions (SDFs) to handle complex objects.
The availability of GenSDF opens up avenues for exploring new research
questions in computational fluid dynamics (CFD) and beyond. For exam-
ple, it enables the study of turbulence and flow behavior around geometri-
cally intricate structures at unprecedented scales. It also facilitates research
into optimized solver designs that leverage SDF representations, allowing
for novel investigations into mesh-free methods and hybrid grid-based tech-
niques. Additionally, GenSDF’s ability to handle arbitrary geometries with
high scalability enables interdisciplinary applications, such as biomechan-
ics and atmospheric simulations, that require accurate modeling of complex
boundary interactions. The GenSDF software has been used in the following
manuscript:

1. Patil, A. and Garćıa-Sánchez, C. Hydrodynamics of In-Canopy Flow in
Synthetically Generated Coral Reefs Under Oscillatory Wave Motion,
Journal of Geophysical Research: Oceans, (Under Review)

By streamlining the integration of complex geometries into CFD workflows,
GenSDF significantly reduces the time and effort required for pre-processing,
allowing researchers to focus on core simulations and analysis. This efficiency
improvement accelerates studies on topics like flow-induced noise, drag re-
duction, and wake dynamics. Moreover, its scalability allows researchers to
push the boundaries of resolution in turbulence modeling, leading to more
accurate insights into multi-scale flow phenomena and better validation of
theoretical models. The software’s robustness and scalability have also en-
couraged its adoption in high-performance computing (HPC) environments,
making complex simulations more accessible and routine for a broader audi-
ence.

8

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5042856

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



5. Conclusions

GenSDF provides an open-source, scalable, and accurate method to generate
signed-distance-field for complex objects over a Cartesian grid with variable
vertical grid spacing. The development of this code was primarily motivated
by the need for a scalable and distributed memory solution to generate signed-
distance-field for computational fluid dynamics applications. Some of the
main advantages of GenSDF are: (1) Low memory footprint (2) Scales over
100s of CPUs (3) Easily portable to other solver. The software also provides
a detailed documentation on the source code and example usage. GenSDF is
continually updated and tracked through the github repository where users
can directly contribute.

Acknowledgements

A.P would like to thank the resources provided by the 3D Geoinformation
Research Group for the testing and prototyping of this software. A.P and
C.GS would also like to acknowledge that this research was carried out as
a part of the EU-Project RefMAP. RefMAP has received funding from the
Horizon Europe program under grant agreement No 101096698. The opinions
expressed herein reflect the authors’ views only. Under no circumstances shall
the Horizon Europe program be responsible for any use that may be made
of the information contained herein. During the preparation of this work the
authors used Grammarly in order to spell and grammar check. After using
this tool, the authors reviewed and edited the content as needed and take
full responsibility for the content of the publication.

References

[1] K. A. Goc, O. Lehmkuhl, G. I. Park, S. T. Bose, P. Moin, Large eddy
simulation of aircraft at affordable cost: a milestone in computational
fluid dynamics, Flow 1 (2021) E14.

[2] M. F. Ciarlatani, Z. Huang, D. Philips, C. Gorlé, Investigation of peak
wind loading on a high-rise building in the atmospheric boundary layer
using large-eddy simulations, Journal of Wind Engineering and Indus-
trial Aerodynamics 236 (2023) 105408.

[3] C. Garćıa-Sánchez, D. Philips, C. Gorlé, Quantifying inflow uncertain-
ties for cfd simulations of the flow in downtown oklahoma city, Building
and environment 78 (2014) 118–129.

9

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5042856

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



[4] J. Hochschild, C. Gorlé, Design and demonstration of a sensing network
for full-scale wind pressure measurements on buildings, Journal of Wind
Engineering and Industrial Aerodynamics 250 (2024) 105760.

[5] H. Jiang, L. Cheng, Large-eddy simulation of flow past a circular cylin-
der for reynolds numbers 400 to 3900, Physics of Fluids 33 (3) (2021).

[6] C. S. Peskin, The immersed boundary method, Acta numerica 11 (2002)
479–517.

[7] J. Yang, E. Balaras, An embedded-boundary formulation for large-eddy
simulation of turbulent flows interacting with moving boundaries, Jour-
nal of computational Physics 215 (1) (2006) 12–40.

[8] P. Costa, A FFT-based finite-difference solver for massively-parallel di-
rect numerical simulations of turbulent flows, Computers & Mathemat-
ics with Applications 76 (8) (2018) 1853–1862.

[9] A. Roosing, O. T. Strickson, N. Nikiforakis, Fast distance fields for fluid
dynamics mesh generation on graphics hardware (2019). arXiv:1903.

00353.
URL https://arxiv.org/abs/1903.00353

[10] D. Eberly, Distance between point and triangle in 3D,
https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf,
accessed: 2024-Nov-15 (2020).

10

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5042856

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

https://arxiv.org/abs/1903.00353
https://arxiv.org/abs/1903.00353
http://arxiv.org/abs/1903.00353
http://arxiv.org/abs/1903.00353
https://arxiv.org/abs/1903.00353

	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Impact
	Conclusions

