Adventures in CFD and Geometry

> 3DTea (Finally!!) 21-Nov-2024

Picture generated using ChatGPT Prompt – title of the talk

Part 1: Fake It Till You Make It

Standard Flow Configuration

How to best populate the grid cell values, to reach the final state "as quickly as possible"?

Target Final State to Achieve

Computational Cost ~ $N_x \times N_y \times N_z$

Cost is estimated using: $N_{CPU} \times T$ (hours)

Reference	Flow	Re	Hours	Core type	Cores	Model	Memory (GB)
6. Mansour ³⁴	Channel	595	185	CPU	64	IBM SP2	4.096
7. Kim ⁶	Channel	180	62.5	CPU	4	Cray-XMP	56 Mb
8. Jiménez ⁷	Channel	2003	2929.69	CPU	2048	PowerPC 970FX	4096
10 T 9.10	Character 1	5106	201.47	CDU	52 4200	December 4.2	510 TD
10. Lee	Channel	5186	51.20	CPU	52 4288	PowerPC A2	512 18
11. Alfonsi	Channel	200	51.39	CPU/GPU	6 CPU/ 1 GPU	Nvidia C-1060	28
12. Alfonsi ¹¹	Channel	400	237.5	CPU/GPU	6 CPU/ 1 GPU	Xeon X5660 Nyidia C-1060	28
13. Alfonsi ¹¹	Channel	600	461.11	CPU/GPU	18 CPU/	Xeon X5660	84

17. Vela-Martín ¹⁶	Channel	2000	507.81	GPU	128	Tesla P-100	2048
18. Vela-Martín ¹⁶	Channel	5303	2734.38	GPU	512	Tesla P-100	8192

Computational Cost ~ $N_x \times N_y \times N_z$

Cost is estimated using: $N_{CPU} \times T$ (hours)

Reference	Flow	Re	Hours	Core type	Cores	Model	Memory (GB)	Region	kWh	Mass (kg)
Mansour ³⁴	Channel	595	185	CPU	64	IBM SP2	4.096	California	237.74	51.46
Kim ⁶	Channel	180	62.5	CPU	4	Cray-XMP	56 Mb	California	5.01	1.08
Jiménez ⁷	Channel	2003	2929.69	CPU	2048	PowerPC 970FX	4096	Spain	1.28×10^{5}	2.18×10^{4}
). Lee ^{9,10}	Channel	5186	381.47	CPU	52 4288	PowerPC A2	512 TB	Illinois	$4.13 imes10^6$	1.1×10^{6}
. Alfonsi ¹¹	Channel	200	51.39	CPU/GPU	6 CPU/ 1 GPU	Xeon X5660 Nvidia C-1060	28	Italy	25.17	8.15
. Alfonsi ¹¹	Channel	400	237.5	CPU/GPU	6 CPU/ 1 GPU	Xeon X5660 Nvidia C-1060	28	Italy	116.3	37.66
. Alfonsi ¹¹	Channel	600	461.11	CPU/GPU	18 CPU/	Xeon X5660	84	Italy	677.41	219.37
17. Vela-Martín ¹⁶	Channel	2000	507.81	GPU	128	Tesla P-100	2048	Switzerland	$2.78 imes 10^4$	320.08
8. Vela-Martín ¹⁶	Channel	5303	2734.38	GPU	512	Tesla P-100	8192	Switzerland	5.98×10^{5}	6894

Computational Cost ~ $N_x \times N_y \times N_z$

Reference

Cost is estimated using: $N_{CPU} \times T$ (hours)

Re

Flow

Hours Core type Cores

		0 =	Corporate clients	Contact	Career FAQ	🌐 Global English	~
	Calculate		Choose			Pay	
	Your flight: From: Amsterdam (NL),	AMS to: Paris (FR), CD	G, One way, Economy C	ass, ca. 400 k	m,1traveller		
	CO ₂ amount: 0.199 t			200	kg of	CO2	_
Regio	on kWh	Mass (kg)	Flight fr	om A	mster	dam - I	Paris
Califor Califor Spai	rnia 237.74 rnia 5.01 n 1.28 × 10	51.46 1.08 2.18×10^4	A	•			

6. Mansour ³⁴	Channel	595	185	CPU	64	IBM SP2	4.096	California	237.74	51.46	
7. Kim ^o	Channel	180	62.5	CPU	4	Cray-XMP	56 Mb	California	5.01	1.08	
8. Jiménez ⁷	Channel	2003	2929.69	CPU	2048	PowerPC 970FX	4096	Spain	1.28×10^{5}	2.18×10^{4}	
10. Lee ^{9,10}	Channel	5186	381.47	CPU	52 4288	PowerPC A2	512 TB	Illinois	$4.13 imes 10^6$	$1.1 imes 10^6$	
 Alfonsi¹¹ 	Channel	200	51.39	CPU/GPU	6 CPU/	Xeon X5660	28	Italy	25.17	8.15	
					1 GPU	Nvidia C-1060					
12. Alfonsi ¹¹	Channel	400	237.5	CPU/GPU	6 CPU/	Xeon X5660	28	Italy	116.3	37.66	
					1 GPU	Nvidia C-1060		-			
13. Alfonsi ¹¹	Channel	600	461.11	CPU/GPU	18 CPU/	Xeon X5660	84	Italy	677.41	219.37	
17. Vela-Martín ¹⁶	Channel	2000	507.81	GPU	128	Tesla P-100	2048	Switzerland	$2.78 imes 10^4$	320.08	
18. Vela-Martín ¹⁶	Channel	5303	2734.38	GPU	512	Tesla P-100	8192	Switzerland	5.98×10^5	6894	

Model

Memory (GB)

Computational Cost ~ $N_x \times N_y \times N_z$

Reference

6. Mansour³⁴

8. Jiménez⁷

7. Kim⁶

Cost is estimated using: $N_{CPU} \times T$ (hours)

Flow

Channel 595

Channel

Re

180

Channel 2003 2929.69

Hours Core type Cores

CPU

CPU

CPU

64

4

2048

185

62.5

	Сту	climate 8	Q E	Corporate clients	Contact Ca	reer FAQ	Global English	~
		Calculate		Choose		Pa) ay	
	Your f	flight: Amsterdam (NL), AN	IS to: Paris (FR), CDG	à, One way, Economy Cl	ass, ca. 400 km,	1 traveller		_
	CO ₂ a	amount: 0.199 t			200	kg of C	202	
				Elight fr	om Ar	nctord	am -	Daric
mory (GB)	Region	kWh	Mass (kg)	i ligiti li		nsteru		1 0115
4.096 56 Mb	California California	237.74 5.01	51.46 1.08					
4096 512 TB 28	Spain Illinois Italy	1.28×10^{5} 4.13×10^{6} 25.17	2.18×10^4 1.1×10^6 815					
20	italy	23.17	0.15					

 10. Lee ^{9,10} 11. Alfonsi ¹¹	Channel Channel	5186 200	381.47 51.39	CPU CPU/GPU	52 4288 6 CPU/	PowerPC A2 Xeon X5660	512 TB 28	Illinois Italy	4.13×10^{6} 25.17	1.1×10^{6} 8.15
12. Alfonsi ¹¹	Channel	400	237.5	CPU/GPU	1 GPU 6 CPU/ 1 GPU	Nvidia C-1060 Xeon X5660 Nvidia C-1060	28	Italy	116.3	37.66
13. Alfonsi ¹¹	Channel	600	461.11	CPU/GPU	18 CPU/	Xeon X5660	84	Italy	677.41	219.37
17. Vela-Martín ¹⁶	Channel	2000	507.81	GPU	128	Tesla P-100	2048	Switzerland	2.78×10^{4}	320.08
 18. Vela-Martín ¹⁶	Channel	5303	2734.38	GPU	512	Tesla P-100	8192	Switzerland	5.98×10^{5}	6894

Model

IBM SP2

Cray-XMP

PowerPC

970FX

Memory (

Lots of CO2 output for no reason! We better find a fast way to spin up to the final state.

Standard Flow Configuration

Target Final State to Achieve

Use an existing tool – differently! – No Math Version

Instead of using the synthetic turbulence generator as an inflow, populate the grid with data!

Use an existing tool – differently! – No Math Version

Instead of using the synthetic turbulence generator as an inflow, populate the grid with data!

Can you guess which one is fake and which one is real?

BreatheLab affiliates are NOT allowed to answer/respond!

Using artificial turbulence to achieve swift converged turbulence statistics in a pressuredriven channel flow

A. Patil and C. García-Sánchez

Supplementary Video 2

Comparison of transition to turbulence, friction Reynolds number: 500

 $Re_{\tau} = 500.0$

A factor of 7-8 faster compared to conventional methods

End of Part 1

Part 2: GenSDF

But Why?

Memory hungry trimesh library Slow python code and many more.....

<u>Solution</u>

Modern Fortran + MPI based implementation

- Low memory requirements
- Easy to port to existing CFD solvers in Fortran
- Good excuse to program :)

🗋 runall_mpi.sh	Updating paper draft and README.md	last year
🗅 tests.py	Update bounding box in tests.py	last year
C translateSTL.py	code cleanup	last year
🗋 visualiseSDF.py	Code clean up	last year
다 README 최 BSD-3-Clause license		

Setup the virtual environment

- Install virtual environment [See https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtualenvironments/]
- python3 -m pip install ---user virtualenv
- Create the virtual environment for a specific python version .and. say yes to the prompt question python3 -m venv <pathtosave>/stl2sdf
- Install the required libraries
- pip install -r requirements.txt

To deactivate the special python environment use [Note: dont do this if you wish to run the code...] deactivate

STEP 3: Decompose workload

18:04 | testrun | > mpirun -np 8 ./gensdf_mpi

NARA DESCRIPTION CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRA	
NARA DESCRIPTION CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRA	
*** Starting with 8 MPI ranks ***	
*** Input file sucessfully read ***	
*** Successfully read the CaNS grid ***	
*** Sucessfully finished setting up the grid spacing ***	
Successfully read OBJ file: data/sphere_clipped.obj	
Number of vertices: 5856000	
Number of normals: 5856000	
Number of faces: 11704000	
Geometry is bounded by (minimum) 8.11000000000003E-006 1.019000000000001E-005	0.110000000000000000
Geometry is bounded by (maximum) 1.9999840300000000 0.39998981000000000	0.130000000000000000
*** Min-Max Index-Value pair ***	
Min-Max x: 1 2.00000000000000000000000000000000000	
Min-Max y: 1 3.333333333333338E-004 600 0.3996666666666666673	
Min-Max z: 229 0.10710937499999999 256 0.1197656250000000	
Finished pre-processing geometry in 30.270209999999999 seconds	
Estimated Minimum Memory usage: 3.02 GiB(s)	
*** Calculating the signed-distance-field u-faces ***	
100.00% 11704000/11704000 Elapsed: 103.17s Remaining: 0.00s	
*** Writing output data to file ***	
Done with file write in 0.2325000000000082 seconds u-faces	
*** Calculating the signed-distance-field v-faces ***	
100.00% 11704000/11704000 Elapsed: 103.39s Remaining: 0.00s	
*** Writing output data to file ***	
Done with file write in 0.23231200000000000 seconds v-faces	
*** Calculating the signed-distance-field v-faces ***	
100.00% 11704000/11704000 Elapsed: 104.08s Remaining: 0.00s	
*** Writing output data to file ***	
Done with file write in 0.23273299999999963 seconds v-faces	
*** Calculating the signed-distance-field Cell-Center ***	
100.00% 11704000/11704000 Elapsed: 103.48s Remaining: 0.00s	
*** Writing output data to file ***	
Done with file write in 0.23209999999999998 seconds Cell-Center	
*** Calculation for SDE completed in 445.869882000000000 seconds ***	

Thank you!