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A B S T R A C T

Rapid climate change and the corresponding estimated sea level rise can affect the
performance of the coastal defense structures such as breakwaters, seawalls, and
dikes. In order to improve these coastal defenses, a detailed understanding of the
processes which contribute to wave run-up and overtopping over the coastal de-
fenses needs to be established. Following the exponential growth of computing
capacity around 1970’s, a wide variety of computational models were developed
to study fluid flow. Traditionally, three computational paradigms have existed in
order to study wave transformation and surf zone hydrodynamics: phase averaged
models, phase resolving models, and Computational Fluid Dynamics (CFD) mod-
els. Limitations posed by the underlying linear wave theory in phase averaged and
other simplifications in the phase resolving models, may not provide sufficient de-
tail in wave breaking, wave energy dissipation, wave run-up, wave overtopping, and
potentially other detailed hydrodynamic processes. This lack of resolution in depth-
averaged models for wave-breaking, wave run-up, and wave overtopping processes
motivates a detailed investigation using CFD based models, which can correctly
mimic wave-breaking and other hydrodynamic processes.

The recent growth in available computational capacity has greatly improved the
applicability of CFD based models for large scale transient flows such as waves
near a coast. Additionally, the developments in wave generation and wave absorp-
tion boundary conditions by Jacobsen et al. [2012] in the open-source CFD toolbox
OpenFOAM R©, have facilitated the use of OpenFOAM in coastal engineering ap-
plications. This encourages investigating the coastal environment using relatively
complex models, thus providing insights into fundamental processes which con-
tribute to coastal safety. To that end, this thesis focuses on investigating wave
overtopping and the underlying processes which contribute to the aforementioned
hydrodynamic aspects.

Overtopping demands accurate capture of the free surface (interface between
water and air). The waveFoam solver suffers from numerical diffusion of the inter-
face, consequently requiring a different approach to mimic the sharp interface. In
order to cater to this deficiency, a new solver which combines the capabilities of
waveFoam [Jacobsen et al., 2012] and isoAdvection [Røenby et al., 2016] which has
the ability to capture sharp interfaces by means of a sub-grid approach has been
integrated (waveFlow) and used in this study. In addition to the new solver, a new
set of Reynolds Averaged Navier-Stokes (RANS) closures developed by Larsen and
Fuhrman [2018] for wave modeling applications have been employed to correctly
capture turbulence levels under breaking waves. The preliminary steps include cal-
ibrating and assessment of the newly integrated waveFlow solver. Using a relatively
simple conceptual test case, a comparison of the free surface behavior and overtop-
ping discharge was carried out. This calibration test was followed by a comparison
of numerical results with the experimental investigations carried out by Ting and
Kirby [1994]. Following this benchmarking study, experimental studies carried out
by Flanders Hydraulics investigating wave overtopping over dikes in shallow fore-
shore environments was validated. A comparison of waveFlow and waveFoam was
made to assess the qualitative and quantitative differences between the two interface
capture methods on overtopping. Using this new solver, OpenFOAM was able to
reproduce the surface elevation and significant improvement in the overtopping re-
sults were obtained for identical model setup in comparison to the waveFoam solver.
A coupled approach using a potential flow solver named OceanWave3D aided simu-
lation of large domain wave propagation and helped to cut down the computational
time.
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1 I N T R O D U C T I O N

outline
This chapters aims to introduce the main area of investigation. A brief overview
of the problem will first be presented, this will be followed by the research outline
which discusses the research objective along with the research questions that will
be addressed in this thesis. The successive sections will discuss the scope and
methodology of this thesis work.

1.1 brief overview
Low-lying countries such as Belgium and the Netherlands have a coastal defense
system along the coastal urban areas. Some of these protected coastal areas are char-
acterized by a mildly sloped and very shallow beach in front of a dike [Vandebeek
et al., 2018] (See Figure 1.1). Sea level rise and extreme climatic events can consid-
erably question the current coastal defense installations in such low-lying countries.
In order to avoid the possible damage and provide adequate safety, most of the af-
fected regions are reinforcing the sea defenses. Strengthening such coastal defenses
requires a detailed understanding of the underlying processes which result in wave
run-up and overtopping in such shallow coastal environments.

Figure 1.1: Scheveningen beach (Den Haag, Netherlands) depicting a shallow coast with
high-rise buildings running along the coast.

In the past (before the catastrophic flood of 1953 in the Netherlands), wave run-
up was considered to be one of the most important parameters for determining the
height of the coastal defense. However, since then overtopping volume along with

1
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run-up has been found out to be a crucial factor which determines the integrity of
the coastal defense system [Schiereck, 2016]. This enforces the accurate prediction
of overtopping volume and wave run-up over a sloping beach with a coastal de-
fense. In the past, the surf-zone has been studied considerably, both experimentally
and numerically. A wide range of geometries for regular and irregular waves have
been investigated mainly dealing with the mean overtopping discharge [Stansby
and Feng, 2004]. In this region of interest (surf zone), the incident offshore waves
are substantially transformed as a result of the underlying bathymetry and other
associated non-linear processes. One of the most important phenomena which oc-
cur near the coast is wave-breaking. Wave-breaking is seen as one of the last and
most complex life events of a wave. As the waves move closer to the shoreline, the
wave height increases due to shoaling until the wave cannot stay vertical anymore
resulting in forward pitching and breaking. This breaking results in the generation
of high amounts of turbulence, which is one of the key governing processes con-
verting organized wave motion into turbulence. As quantification of the turbulence
based on field observations is not always possible, a large number of experimental
studies have been conducted e.g., Ting and Kirby [1994], Beij and Battjes [1993],
Svendsen and Putrevu [1995], [Devolder et al., 2018]. As opposed to a simplified
experimental approach, the practical conditions under which such coastal defenses
exist are rather complex, waves are irregular, directional, oblique and generally
propagate over immensely complex bathymetry. This hinders any kind of empiri-
cal studies which require restricted defining criteria, thus demanding a modeling
scheme which is able to process the above-defined input conditions [Stansby and
Feng, 2004].

Since prototype/field observations are not always possible and scaled physical
models may have constraints with regards to replicating given wave conditions in
most cases, numerical wave models can provide a link to reproduce field conditions
subject to certain approximations/simplifications. One of the central considerations
in designing a numerical wave model for practical usage, is limiting the computa-
tional time. This computational limitation is posed by the Courant criterion which
dictates that the wave energy (cg,x in this case) may not travel more than one geo-
graphic cell in one time step [Holthuijsen, 2007]. This implies that ∆t < ∆x

cg,x
, where

∆t is the numerical time step [s], ∆x is the numerical grid size [m], and cg,x is the
group wave velocity in the propagation direction [m/s]. Another way to look at
the Courant condition (commonly known as Courant–Friedrichs–Lewy [CFL] con-
dition) is to follow figure 1.2. The red line in the figure depict the region of depen-
dence for the grid point under consideration (marked yellow). For oceanic waters,
the value of ∆x ∼ 25-100 km, this gives a ∆t between 20-80 min for the lowest fre-
quency of waves ∼ 0.04 Hz. In coastal waters, the value of ∆x ∼ 10-100 m, while
the lowest frequency stays the same. This results in a ∆t ∼ 1.5-15 s, thus rendering
the model operationally unacceptable [Holthuijsen, 2007].

Figure 1.2: Graphical representation of the CFL condition
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Motivated by the lack of computational power and a need to model such coastal
systems, a wide variety of models were introduced. Traditionally, three compu-
tational paradigms have existed in order to study wave transformation and surf
zone hydrodynamics: phase averaged models, phase resolving1 models, and Com-
putational Fluid Dynamics (CFD) models. A schematic of the various classes of
numerical models has been presented in Figure 1.3.

Figure 1.3: Various computational models positioned on the computing time vs level of ac-
curacy graph [van Mierlo, 2014].

In this thesis, the focus is mainly going to be on the left section of Figure 1.3 i.e.,
the Incompressible Navier-Stokes equations with Reynolds Averaged Navier-Stokes
turbulence closure. The rise in highly parallelized computing system and advances
in computing power have made it possible to investigate wave hydrodynamics using
small scale turbulence resolving models like the one considered in this thesis. This
thesis builds upon the work carried out previously by Jacobsen et al. [2012], Larsen

1In this context, these are models which do not resolve multiple interfaces.
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and Fuhrman [2018], Røenby et al. [2016], and Zhou et al. [2014] with regards to
wave modeling and multiphase flows.

1.2 research outline

Research Objective

In order to investigate wave hydrodynamics and provide a better prediction in the
required hydrodynamic parameters contributing to wave overtopping, a detailed
modeling strategy is required. To that end, this thesis aims to answer a few relevant
questions with regards to wave hydrodynamics. The principal focus of this thesis
is to understand the hydrodynamic processes involved in wave overtopping over
coastal structures by integrating a CFD model ( waveFlow) capable of reproducing
the hydrodynamics including wave-breaking in shallow foreshore environments .

Research Questions

In order to achieve the previously mentioned objective a systematic research strat-
egy has been formulated. This strategy aims to answer a central question which
seeks to gain insight into the physics of wave hydrodynamics by means of a numer-
ical model.

What is the practical feasibility of advanced CFD based models in
comparison to simpler models like phase averaged and phase-resolving
models, in complex surf zones and swash zones?, and which physical

processes in the surf zone affect wave overtopping on the slopes of coastal
structures like dikes?

This research questions sets the theme for a set of detailed sub-questions to
answer the principal research question and thus achieve the research objective.

Sub-Questions

• What hydrodynamics of the surf-zone can be obtained with an advanced model em-
ploying a RANS based approach?

• How is the turbulent kinetic energy distributed for spilling and plunging wave breaker
using a RANS based approach?

• What additional improvement can be observed in the prediction of wave overtopping
over coastal dikes using a RANS based approach in comparison to simpler models?

• What physical processes contribute to wave overtopping and how well are they repli-
cated in the numerical model?

1.3 scope and methodology

Scope

The area of investigation as described in section 1.2 is multifaceted and involves a
synergy of different fields of science (SeeFigure 1.4). In addition to this, the area of
wave hydrodynamics is quite broad, as a result, it is important to specify the area
of focus in this particular thesis.
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Figure 1.4: Different fields of science involved in order to investigate the hydrodynamics of
waves near a coastal structure.

This thesis will focus on the following basic tasks:

1. Integrate waves2Foam and isoAdvection into a new solver named wave-
Flow within the OpenFOAM framework and assess its performance in com-
parison to the old solver originally developed by Jacobsen et al. [2012]. This
new solver will be assessed for wave overtopping performance.

2. Investigate turbulence characteristics using a RANS based approach with wave-
Flow. This study will also permit a feasibility investigation to use RANS
based turbulence closures for relatively long term wave modeling applica-
tions.

3. Investigate the physical processes contributing to wave overtopping over coastal
defense structures like dikes using a numerical model and assess the capabili-
ties of the numerical model.

4. Address the additional benefits derived by using an advanced numerical model
and turbulence closure and also list any shortcomings in the modeling strat-
egy.

Methodology

Large scale experimental studies have already been carried out in order to inves-
tigate swash and surf zone hydrodynamics see, Beij and Battjes [1993], Ting and
Kirby [1994], Scott et al. [2009]. In this thesis, a numerical model will be used to
gain extensive insights into the surf and swash zone hydrodynamic processes. The
numerical investigations involve a few steps as described below:

• Integrate a new solver within the OpenFOAM environment based on the pre-
vious studies carried out by Jacobsen et al. [2012] and Røenby et al. [2016].

• Carry out a proof of concept test case for the newly developed solver.
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• Benchmark the numerical model for monochromatic waves with spilling and
plunging wave breakers.

– Carry out a comparative analysis of the experimental results and numer-
ical results.

– Outline the shortcomings and difficulties in the numerical model. Ar-
rive at a guesstimate for the error bar involved with using the numerical
model in the current state.

• Investigate numerical model performance for irregular waves for wave over-
topping over a coastal dike.

– Qualitative and quantitative comparison of waveFoam and waveFlow
solvers with respect to overtopping.

– Assess the performance of the numerical model against the experimental
data and outline the strengths and shortcomings of the numerical model.

1.4 outline of the thesis
The subsequent chapters will consist of an extensive literature review in Chapter 2

which provides the state of the art description for coastal hydrodynamics and the
numerical advances made within the domain of computational hydraulics. This
chapter will also address some of the difficulties associated with modeling waves
using various computational approaches. In Chapter 3, the development of the
new solver waveFlow and a conceptual test case will be discussed to highlight the
differences between the two interface capture methods tested in this thesis. Chap-
ter 4 presents the model setups and domain descriptions for the two experimental
investigations replicated. This chapter also provides some insights into the differ-
ent data analysis routines used in the thesis work. Chapter 5 discusses in depth
the results for both the experimental campaigns replicated in the numerical model.
This chapter also aims to provide a concise yet complete description of the results
in terms of the various variables compared in the experiments and the numerical
model. In the concluding chapter the research questions proposed in Chapter 1 will
be re-addressed in new light and the final recommendations will be provided. The
rest of the text in the thesis consists of the appendices which hosts most of the C++
and python code used to carry out the analysis.



2 L I T E R AT U R E R E V I E W

outline
In this chapter an overview of the established knowledge about surf and swash zone
dynamics will be presented. Each section focuses on a different aspect and aims
to provide a thorough but condensed perspective on the corresponding scientific
advancements. Section 2.1 details the hydrodynamic processes in the surf and the
swash zone. In section 2.2, the fluid instabilities which eventually lead to turbulence
will be addressed without restriction to shallow waters. In the following section,
the turbulence under breaking waves will be addressed. Section 2.4 discusses the
empirical understanding of the overtopping processes. The final section of this
chapter details the computational aspects of modeling coastal environments.

2.1 surf and swash zone hydrodynamics
The coastal zone can be divided into a number of different sections. A schematic of
this classification can be seen in Figure 2.1. Most waves are either generated due to
the effect of wind (generally termed as short waves) or due to storms1. Such events
generally introduce energy into the oceanic water system. This energy is introduced
as a result of the momentum exchange between wind and water or pressure gradi-
ents created due to storms which eventually generate surface curvature and drive
the flow. This energy propagates in the form of waves across the ocean reaching the
coastal regions. Since the propagation of waves in deeper oceanic water is different
from shallower waters like those found in the coastal zones (see Holthuijsen [2007]),
complex dynamics emerges in the behavior of the waves due to this interaction with
the sea surface. It is in this surf and swash zone that one of the most interesting and
complex life-stages of a wave occurs i.e., wave breaking. This is where the incoming
wave energy is transformed into highly chaotic turbulent structures and dissipated
eventually in the form of heat.

Figure 2.1: Cross-sectional view of the coastal region depicting the various zones. Adapted
from Coastal Engineering Research Council [1984].

1Other wave generation mechanisms exist, however they are not listed here.
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Although the above description of wave generation is limited to wind generated
waves, a wide variety of waves coexist in the oceanic system. A spectral overview of
the different types of waves can be seen in Figure 2.2. Additionally, there are a wide
variety of hydrodynamic and morphodynamic processes which can be observed in
the coastal zones other than wave breaking itself. Processes like cross-shore, along-
shore currents, morphodynamic response of the beach, density currents, stratifica-
tion, etc., although have interesting dynamics, will be excluded from the description
for sake of brevity. In this and the following sections, the description of waves in
oceanic system will be restricted to wind waves only. Considering a large amount
of energy exists in this part of the energy spectrum, it will be of central focus.

Figure 2.2: Frequencies and periods of the vertical motions of the ocean surface [Holthuijsen,
2007]

According to Arcilla and Lemos [1990], the relevant processes in the surf zone
can be classified in roughly four categories:

• Sediment transport and corresponding changes in morphology, with a charac-
teristic time scale of 1 day to 1 month, and a spatial scale between 100 m and
1000 m,

• Currents (non-oscillatory flow), with time scales between 10 minutes and 1

hour, and spatial scales similar to those of sediment transport,

• Organized oscillatory flows (i.e., wind waves, infra-gravity waves), with time
scales ranging from 10−1 sec to 10 min, and space scales from 1 to 100 m.

• Random oscillatory flow (turbulence), whose length scales are between 10−3

to 101 sec , and with small (10−4 to 10−1 m) spatial scales.

2.2 wave breaking

2.2.1 Deep water wave breaking

Despite the early proof of the presence of Stokes (regular) type waves, which were
initially proposed by Stokes [1847] and later confirmed by Benjamin [1967], the
growth and presence of instabilities in periodic stoke wave propagation was un-
known/uninvestigated until C Yuen and M Lake [1980] showed the existence of
deep water wave instabilities. The seminal work by S Longuet-Higgins and D. Cokelet
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[1976], investigating the evolution of the Benjamin-Feir instabilities first proposed
by T. Benjamin and J. Feir [C Yuen and M Lake, 1980] describes the development of
modulation (sideband) instabilities. These modulation instabilities are deviations
from a periodic wave form propagation which are reinforced by the non-linearity
(advection term in this case) in the governing partial differential equation. For long
term wave propagation, the spectral-sideband eventually breaks up into train of
pulses [Benjamin and Feir, 1967]. As seen in Figure 2.3, the power spectrum shows
a clear side band spectrum for an AM broadcast signal2. Although, wave propaga-
tion is different, it bears such resemblances with other energy propagation systems.

Figure 2.3: The power spectrum of a typical side banded signal. In this figure the carrier fre-
quency ( fc) is the main component at which the AM broadcast is traveling, while
the sidebands represent the transmitted modulation. Here fm corresponds to the
maximum modulation frequency. The right side of the figure also depicts the
spectrogram of such a spectrum (AM broadcast) clearly depicting the sideband
(green shades) and the carrier frequency (in red)

Theoretical investigation of such instabilities have restrictions for a variety of
reasons, some of them have been listed below:

• Non-linearity of the surface boundary condition (air-water interface)

• Unsteady nature of the flow

• Breaking maybe a transitional process, thus bordering the limits between lam-
inar and turbulent flow. The latter having mathematically unsolved questions
by definition [Melville, 1982].

Consequently a wide variety of numerical investigations pertaining the evolu-
tion and growth of such instabilities leading to wave breaking have been carried out
by Yuen and Ferguson [1978], Fuhrman et al. [2006], Chalikov [2007], and Kharif and
Touboul [2010] to name a few. Since the main focus of this study is to investigate
the effect of wave breaking in the shallow surf and swash zone, only the presence
of the deep water instabilities is acknowledged without going into extensive details.
The next sub-section describes the formulations and description of wave breaking
in the shallow coastal environment.

2Image Source: Wikipedia.
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2.2.2 Shallow water wave breaking

The term "wave breaking" (See Figure3
2.4) in this section is described as the transi-

tion from a smooth wave to the quasi-steady state with a white-water front at any
particular instant within the transition [Peregrine, 1983]. Such wave breaking can
occur both in deep and shallow water regimes of the wave life cycle. Although the
resulting wave breaking looks similar to that observed in deep waters, the processes
leading to this state are vastly different. The flow instabilities which lead to wave
breaking in deep waters have been discussed in section 2.2.1. The wave breaking
process as described by Peregrine [1983] in general is easier to observe around any
coastal region where the waves break due to structural gravity based processes.

(a) Shoaling Wave (b) Breaking Wave

Figure 2.4: The figures above show a distinct contrast in the two stages of the wave life cycle.
The term wave breaking describes this transition from shoaling wave to foam
featured breaking wave.

According to Battjes [1988], the theoretical criterion for the onset of periodic
waves breaking over a slope (beach), can be regarded as the limiting conditions for
solutions representing non-breaking standing waves. This generalization is based
on the previous studies carried out by Carrier and Greenspan [1958]. They derived
an exact standing-wave solution for inviscid, nonlinear, shallow-water equations.
The solutions derived in this study hold while the parameters εw < 1 defined as
given in equation 2.1.

εw =
ω2aw

gα2 (2.1)

Where εw is the breaking parameter, ω is the wave period [rad/s], aw is one half
of the total vertical waterline excursion [m], g is the gravitational acceleration [m/s2],
and α2 is the beach slope (after using small angle approximation sin(α) ≈ α).

The local surface slope stability was evaluated to be critical when the value for
εw,cr = 1. This means that the surface becomes vertical (locally) when this value
is reached. Munk and Wimbush [1969] derived the criterion by attributing εw as a
parameter which is the ratio of the maximum downslope acceleration ( ω2aw

α2 ) and
downslope component of gravitational acceleration (gα). Additional investigations
for the linear shallow water equations were carried out following these studies. Lin-
ear solutions valid for arbitrary depths were also introduced by Keller [1963], Miche

3Source: https://www.art.com/products/p45909342294-sa-i10492339/

jefffarsai-wave-breaking-in-ocean.htm

https://www.art.com/products/p45909342294-sa-i10492339/jefffarsai-wave-breaking-in-ocean.htm
https://www.art.com/products/p45909342294-sa-i10492339/jefffarsai-wave-breaking-in-ocean.htm
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[1944], and Pocklington [1921]4. The solutions to the linear shallow water equations
predict an amplification factor aw

2a0
= ( π

2α )
1/2, in which 2a0 is the amplitude at an

anti-node of the standing wave in deep water. In order to transform the incident
wave conditions to those of deep water, the parameter aw was replaced by 2a0 while
ignoring the slope dependant amplification [Battjes, 1988].

The above descriptions for wave breaking criterion are based on analysis of the
non-linear and linear shallow water equations which are derived by simplifying
the Navier-Stokes equations which govern fluid flow. In addition to the analytical
expressions, empirical expressions relating the physical properties to wave breaking
were also investigated in depth by Iribarren and Nogales [1949] which were later
modified by Battjes [1974].

As discussed by Svendsen and Putrevu [1995], the surf similarity parameter ζ is
defined as per Equation 2.2,

ζ =
hx√

H/L0
, (2.2)

where L0 is the deep water wavelength, hx is the bottom slope, and H is the deep
water wave height. This parameter was derived for the situation of standing waves
on a steep beach with full reflection as opposed to waves breaking over a gently
sloping beach. An underlying assumption which is not clearly reflected in the above
formulation of the surf similarity parameter is that, the waves break at the first
node from the shoreline. The depth at this node is then used as the characteristic
depth which is in-turn used to determine the breaking wave height. Although this
parameter has garnered a good reputation to describe the surf zone wave conditions,
it does not completely resemble the wave motion in the actual surf-zone. One
explanation on why the surf-similarity parameter seems to describe the surf-zone
conditions so well could be ascribed to the beach slope parameter. Since there is
a definitive relationship between the beach slope parameter and the surf similarity
parameter as described in Equation 2.3, it could explain why the surf similarity can
predict surf zone wave breaking conditions [Svendsen and Putrevu, 1995].

Sb = 2.3ζ0 (2.3)

2.3 turbulence characteristics under breaking
waves

The previous section discussed the routes which lead to wave breaking, eventually
cascading into turbulent structures within the fluid column in the surf zone. To
summarize the previous section, surf zone turbulence originates from instabilities
of surface waves which lead to the release/conversion of kinetic energy by means
of wave breaking [Serio and Mossa, 2006]. Breaking waves and the associated flow
field govern the velocity distribution of a large number of hydrodynamic/morpho-
dynamic parameters [Christensen and Deigaard, 2001]. The extremely unsteady
and non-uniform nature associated with breaking waves in the surf zone has been
evident since the pioneering work by Stive [1980]. This section will detail the avail-
able knowledge on the turbulence characteristics under breaking waves without any
restrictions to regular wave conditions.

4The results are usually ascribed to Miche [1944], however, they were also derived by Pocklington
[1921] earlier.
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2.3.1 Overview of turbulence in waves

The need to investigate the temporal and spatial distribution of k (Turbulent Kinetic
Energy) stems from a fundamental need to model the coastal environment. Since
antiquity a wide range of turbulence approximations (closures) have been utilized
to incorporate the effect of fluctuating velocity components in the flow domain. Sim-
ple models such as, the eddy viscosity model which follows equation 2.4 showed
sufficient capability to model wave flows well [Svendsen, 1987]. In addition to sim-
ple algebraic models which aimed at describing the flow details, advanced models
like the two equation k − ε or k − ω (ε is TKE dissipation rate while ω is specific
TKE dissipation rate) based models also included a general transport equation for
the relevant quantities. Since the determination of k is fundamental to evaluate the
turbulent diffusion coefficient, and consequently, the turbulent mass transport (see
equation 2.5), a wide variety of studies have investigated the turbulence character-
istics within the surf zone [Serio and Mossa, 2006].

νt ∝ k1/2 (2.4)

where νt is the eddy viscosity and k is the turbulent kinetic energy.

∂k
∂t

+
∂〈uj〉k

∂xj
=

∂

∂xj
(

1
ρ
〈u′j p

′〉+ 〈u′jk
′〉− 2ν〈u′js

′
ij〉)−〈u

′
iu
′
j〉

1
2
(

∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)− 2ν〈s′ijs
′
ij〉

(2.5)

where uj represents the velocity component, k represents the turbulent kinetic en-
ergy, xj is the spatial coordinate, ρ is the fluid density, k

′
is the fluctuating compo-

nent of the turbulent kinetic energy, and sij is the strain-rate tensor. To that end,
the studies carried out by Svendsen [1987] analyzed the distribution of turbulence
kinetic energy (k) in the vertical and horizontal coordinates. One of the crucial ob-
servations in this study was the spreading of turbulence towards the bottom and a
simultaneous decrease in the intensity. In the surf zone where the waves are char-
acterized by turbulent bore like structures emerging from wave breaking on the
incoming waves, the processes involved are schematized in Figure 2.5.

Figure 2.5: Turbulence region under broken waves [Svendsen, 1987]

Figure 2.5 also brings to light the split between the water column, the time-
averaged velocity field in the surf-zone is shoreward above the through level while
and undertow in the offshore direction. The time averaged velocity profile in the
surf zone can be seen in figure 2.6. This velocity profile results in a high shear layer
in the central region (due to large velocity gradient) which tends to be unstable.
Before the wave breaks, periodic undulations of the vortex surface are produced
which resemble the Kelvin-Helmholz (K-H) instabilities. As a result of these insta-
bilities vortical structures emerge in the water column [Watanabe et al., 2005]. The
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experiments carried out by Li and Dalrymple [1998] also investigated the instabil-
ities and the resulting vortex structure. One such vortex within the fluid domain
can be seen in figure 2.7 which represents the general picture under the breaking
waves.

Figure 2.6: Time-averaged velocity profile in the surf zone. Adapted from [Bosboom and
Stive, 2011]

Figure 2.7: Dye pattern depicting vortex structure beneath the wave trough [Li and Dalrym-
ple, 1998]. The wave propagates to the left side in this figure.

2.3.2 Obliquely descending eddies (ODE)

As discussed in the previous section, there are two primary mechanisms by which
wave breaking is achieved. Since the central area of interest is the surf-zone, the
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role of shallow water wave breaking is considered in this section, the details have
been discussed in section 2.2.2.

The overturning jet in the plunging breaker generally produce a 2-D horizontal
rollers which disintegrates into 3-D vortical structures [Zhou et al., 2017]. Watan-
abe et al. [2005] also showed that the splash-up5 cycles in both spilling and plung-
ing breakers result in such initial horizontal rollers/eddies/bores. However, the
strength of the roller is lower in the spilling breaker given that the front face merely
spills down thus initiating the conversion of kinetic energy in the system. In com-
parison to the spilling breaker, the plunging breaker has higher kinetic energy thus
the resulting splash-up cycle is largely chaotic and results in a stronger roller. The
strength of the rollers decreases with successive splash-up which represents a prop-
agating bore [Watanabe et al., 2005]. The development of such a roller can be seen
in Figures 2.8 and 2.9.

Figure 2.8: Schematic of the evolution of 2-D horizontal rollers into 3-D vortical structures
[Watanabe et al., 2005].

Figure 2.9: Numerical simulation of a plunging wave at different times [Lubin et al., 2006].

The turbulent kinetic energy is transported shoreward and vertically down-
ward in the spilling breaker and seaward and vertically downward in the plunging
breaker. The rate of turbulent energy diffusion in the spilling breaker is slower than
that in the plunging breaker. This has been attributed to the presence of strong
large eddies in the plunging breaker which help to transport energy effectively [Se-
rio and Mossa, 2006]. Presence of these vortical structures in breaking waves has
been detailed in some of the experimental work by Svendsen [1987], Ting and Kirby
[1994], and Scott et al. [2009] to name a few. In addition to the experimental inves-

5Splash-up cycles result in the horizontal eddies
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tigations some numerical studies by Zhou et al. [2014], Ozdemir et al. [2013], and
Zhou et al. [2017] to list a few, have also provided an insight into the presence of
vortical structures within breaking waves.

RANS closures assume an isotropic turbulence field, as a result, the cascade pro-
cess as seen in Figure 2.10 is only partially captured by the RANS closure. While
the turbulence scales greater than the grid size are resolved, the sub-grid processes
are modeled by means of a turbulent eddy viscosity, TKE production and dissi-
pation terms. As a result, the 3D cascade processes as discussed in the previous
section does not require explicit resolution. The sub-grid model handles the right
production and dissipation terms which try and mimic the right cascade behavior.
Consequently, using a RANS approach is valid in this case even when one is using
a 2-D modeling approach (the current study).

Figure 2.10: Resolving turbulence cascade process by different computational models,
adapted from [Argyropoulos and Markatos, 2015].

2.4 wave overtopping

2.4.1 Traditional approach

A wide variety of experimental investigations have been carried to study the surf
zone waves. The technical advisory committee on flood defense (Netherlands) has
produced a series of technical reports titled "Wave Run-up and Wave overtopping
at Dikes" (Taken from the translated version, Original version titled "Golfoploop en
golfoverslag" published starting from the year 1972). The governing parameters for
the determination of the height of the dike (See Figure 2.11) are listed as follows
[Van der Meer, 2002] (See TAW 1999-2 for details for Sea and Lake)6:

• The reference level with a probability of being exceeded corresponding to the
legal standard;

• The high water increase or lake level increase during the design period;

• The expected local ground subsidence during the design period;

• The bonus due to squalls, gusts, seiches and other local wind conditions;

6This manual has been superseded by the EurOtop manual which can be found at http://www.

overtopping-manual.com/

http://www.overtopping-manual.com/
http://www.overtopping-manual.com/
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• The expected decrease in crest height due to settling of the dike body and the
under soil during the design period;

• The wave run-up height and the wave overtopping height.

Figure 2.11: Important elements of a dike governing the dike height [Van der Meer, 2002]

Following this framework, a number of empirical formulations have been de-
veloped for estimation of wave run-up. The report discusses a wide variety of
geometries and wave incidence conditions. The classification of the wave run-up
data is based on the breaker parameter as defined in Equation 2.6.

ζ0 =
tan(α)√

s0
(2.6)

where (See Figure 2.11) ζ0 is the breaker parameter, α is the angle of slope, S0
is wave steepness = 2πHm0 / (g T2

m−1,0), Hm0 is the wave height (4
√

m0), Tm−1,0

is the spectral wave period = m1/m0, mn correspond to the nth moment of the
wave spectrum, and g is the acceleration due to gravity. This definition of the
surf similarity parameter uses the spectral description for incident wave conditions.
Using such a breaker parameter, a general formulation for wave run-up can be
made (See Van der Meer [2002] for details). Introducing additional correction terms
to cater for various simplifications can be made such as listed below:

• Effect of slope

• Influence of shallow foreshore

• Influence of angle of incidence of wave attack

• Influence of berm

• Influence of berm width rB

• Influence of roughness elements

• Influence of vertical or very steep wall or a slope

Such correction factors can accommodate for the effects due to individual ele-
ments present in the dike and foreshore (See Van der Meer [2002] for definition)
system. Similar analytical/empirical formulation can be made for the mean/av-
erage wave overtopping discharge. The general measure to obtain the severity of
wave overtopping is by means of and ‘average discharge per linear meter of width’ q
[m3/s/m]. To summarize, similar assumptions/corrections factors can be included
for wave overtopping related estimation.

The outer slope is generally protected using filter layers and bed protection, it is
the inner slope that is susceptible to substantial damage due to wave overtopping.
The guidelines suggest the following average discharges are indicative of erosion of
the inner slope [Van der Meer, 2002]:
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• 0.1 [l/s/m] for sandy soil with a poor grass cover;

• 1.0 [l/s/m] for clayey soil with a reasonably good grass cover;

• 10 [l/s/m] for clay covering and a grass cover as per requirements.

The text above focused on wave overtopping from a perspective which culmi-
nates in an acceptable safety based on the average overtopping discharge. However,
Studies by Taylor and Williams [2019], Whittaker et al. [2018], Hofland et al. [2014]
and Tromans et al. [1991] have portrayed the shift from an average description of
coastal safety to an extreme wave condition based approach (See section 2.4.2). Tech-
nical reports similar to the Van der Meer [2002] were also published by the Coastal
Engineering Research Center, Army Corps of Engineers, Mississippi, USA [Coastal
Engineering Research Council, 1984]. The EurOtop manual is the state of the art
manual which has been well received by the coastal engineering community [EurO-
top et al., 2018]. However, for sake of brevity the contents will not be discussed in
this report and reference to the report has been made for the readers interested.

For design purposes a variety of empirical formulations for wave overtopping
have been developed (See EurOtop et al. [2018], Altomare et al. [2016], Hofland
et al. [2015] ). Since such empirical formulations heavily rely on statistical measures
for quantification of run-up and overtopping, the number of waves required to
arrive at a satisfactory estimate is quite large (∼ 1000 waves). The requirement for
the number of waves is motivated by the statistical characterization of the random
sea-state where about 20-30 min’s (1200-1800 s) are generally used [Holthuijsen,
2007]. Assuming a wave period of ∼ 3 s, gives roughly ∼ 500 waves. Consequently,
most of the above studies use an average/mean descriptor for evaluating wave
overtopping discharge. Despite the effectiveness of the design formulas based on
this approach, the requirement of > 1000 waves limits the use of physical model and
numerical models for long term wave applications. Hence, the use of numerical
models (Navier-Stokes or RANS approach) has been historically limited to short
time durations. As a result, numerical investigations pertaining wave overtopping
and wave run-up using mean overtopping discharge for ∼ 1000 waves has not been
realized yet.

2.4.2 NewWave approach

Most coastal dike designs follow a process as sketched in Figure 2.12, it is critical
to note that in the design stage the most extreme event (anticipated) is used as the
design storm [Loffredo et al., 2007]. Using this information, the time domain of the
incident wave conditions can be reduced to manageable levels.

Figure 2.12: Conventional coastal dike design approach as a schematic (adapted from [Lof-
fredo et al., 2007]).

Omitting the waves that result in no or significantly small overtopping volumes
helps in reducing the time duration for which the physical and numerical models
are employed. Presently, arriving at an extreme response includes the use of ∼ 1000
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waves for a standard JONSWAP spectrum [Hofland et al., 2014]. This leads to a
storm duration of about 2-3 hours at the prototype scale and about 35-40 mins at the
lab scale. Such time durations provide sufficient statistical accuracy, but are almost
entirely non-feasible when using numerical models for detailed investigation. Given
that the extreme response is generated by a single wave group, replacing the design
sea state (DSS) with a substitute sea state (SSS) can provide an effective means
to estimate the extreme incident conditions for the design of coastal dikes. This
substitute sea state can be derived from the original incident wave conditions by
means of a systematic analysis [Hofland et al., 2014].

The wave overtopping analysis carried out by Hofland et al. [2014] investigated
the effect of two different approaches for reducing the time domain of the incident
wave conditions:

• Simple Sampling

• New Wave Approach

In order to test the two different ways to analyze long time series they first
investigated the reproducibility of the incident wave conditions of slightly differ-
ent coastal dike structures. The premise for this approach is that the same wave
group that causes an extreme event in the time window (say) ∆t1 for structure 1

also results in an extreme event within the time window (say) ∆t2 for structure 2

which has only been slightly altered. They present (See Figure 2.13) normalized
cumulative overtopping volumes for different dike configurations and confirm that
for slightly modified (roughness values) structures the same wave groups result in
extreme wave conditions. They also acknowledge the differences obtained for dif-
ferent configurations especially in terms of exceedance probabilities. Thus meaning
that different wave group leading to the maximum overtopping in one configura-
tions could lead to 5th largest overtopping event in another configuration. Since
no individual overtopping analysis was done, it was not possible to distinguish the
individual events. Thus, it was concluded that wave groups leading to an extreme
event in one configurations also resulted in an extreme event in a different configu-
ration, however with a different exceedance probability (rank number). Given that
the design is governed by these extreme events, this seems to be a feasible approach
over simulating the entire storm event.

Figure 2.13: Left: normalized overtopping volume for different structures with the same
wave field. Right: corresponding structures. Top: smooth 1:2 and 1:3 slopes.
Bottom: different geometry and size of roughness elements on outer slope
(Taken from Hofland et al. [2014]).

Following this investigation, the two approaches mentioned in the preceding
section were investigated.
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Simple sampling

Using the original DSS a modified version of this time series was created. A sen-
sitivity analysis for the length of the modified signal was carried out. Slicing and
comparing different time durations of the original DSS provided with a measure for
the effect of the corresponding sampled time duration on the overtopping volumes
recorded. It was found out that the duration may be linked to the time taken by the
smaller waves to reach the structure given as

Tslow =
∫

L
1/cg(2 fp)dx (2.7)

as seen in Figure 2.14, Tslow is indicated by the vertical line in the figure. There
seems to be some sort of correlation with the amount of reflection present for each
case. For example, case W1 shows that about 1Tslow is required for adequate resolu-
tion, this case has low reflection in the system. At the same time, for case W2 steep-
est waves were incident and consequently largest reflection in comparison. This
also resulted in a larger time series about ∼ 3− 4Tslow to adequately resolve wave
overtopping. However, it wasn’t clear why there was a large discrepancy in the W1

overtopping values even for relatively large values of sampled time series.

Figure 2.14: Normalized overtopping volume (ratio of overtopping volume in sampled and
in original test), as function of sample length, T s . Left: case W1, right: case
W2. (Taken from Hofland et al. [2014]).

New wave approach

In cases where the wave height is the most important parameter that determines
wave overtopping, then it is expected that the tenth highest wave heights would on
average result in the tenth largest overtopping volume. As shown by Tromans et al.
[1991], a representative wave height with a given exceedance probability would im-
mediately results in the corresponding overtopping event. For cases where design
is governed by the extreme event, this proves to be a suitable candidate for limit-
ing the time duration of the incident wave conditions. In this study, Hofland et al.
[2014] investigated H13%, H1%, and H0.1% respectively. It was shown that the New
Wave approach yields an overtopping volume which is roughly within a factor of 2

in comparison to the 10,000 waves investigated in the experimental investigations.
This can be seen in Figure 2.15.
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Figure 2.15: Overtopping by New Wave (blue) compared to extreme value distribution of
random DSS. Left: case W1, right: case W2. Inserts: theoretical (blue) and
realized (green) surface elevation of New Waves at the toe of the dike (Taken
from Hofland et al. [2014]).

As detailed in the studies mentioned above, the efficacy of this approach could
help alleviate the trouble in simulating long time series as required for reliable
overtopping predictions. Despite the promising results a detailed investigation is
required to establish the effectivity of this approach for modeling wave overtopping
using a small time domain. In addition to this, the uncertainty in the approach has
not been commented upon in terms of wave overtopping, which could be significant
given that only one data point is obtained from a given wave group [Hofland et al.,
2014]. In addition to this, the effect of low frequency waves, wave setup, and many
more hydrodynamics cannot be readily distinguished thus limiting the scope of this
approach. Consequently, this approach still requires additional investigations and
will not be considered in this thesis work. However, the author does acknowledge
that isolating the shortcomings in this approach might aid the use of this approach
for reducing the long time series replication in the numerical model.

2.5 modeling the coastal environment
The dynamic processes present in the coastal environment are a result of a widely
different driving agents. The characteristic motions occur at various timescales
ranging from turbulent small scale features to the scale of currents and tides. Con-
sequently modeling such a system would require involving all the necessary agents
to be included in order to solve engineering problems concerning the coastal en-
vironment [Brocchini and Dodd, 2008]. Some of the physical processes and the
corresponding scales have been listed and discussed in section 2.1. In the following
section, a concise discussion about the various type of models for inspecting the
coastal zone will be carried out.

2.5.1 Phase Averaged Models

Phase averaged models are models which do not distinguish between individual
waves but instead use a prognostic variable like the wave spectrum to predict wave
transformation. Since the wave spectrum is of interest in this case, these models
are also known as ’spectral models’. The governing equations for phase-averaged
models can either be wave-energy balance or wave-action balance. In this particular
section, the wave-energy balance based model will be presented to qualitatively
differentiate this type of model.

A basic energy balance equation governs the spectral model, this can be sum-
marized in equation 2.8. The underlying assumption for a phase averaged model
is the existence of random phase/amplitude model which contributes to the energy



2.5 modeling the coastal environment 21

of the spectrum. It is this wave energy spectrum that is transported in a given ge-
ographic domain over time. Now in order to predict the wave spectrum at a given
location, the wave energy spectrum at the point of inception (say the coast) has to
be integrated with correct accounting for all the source and sink terms of energy
from the coast till the prediction point [Holthuijsen, 2007]. A simplified schematic
detailing this methodology can be seen in Figure 2.16. For sake of brevity only the
relevant bits are discussed in this chapter.

∂E(ω, θ; x, y, t)
∂t

+
∂cg,xE(ω, θ; x, y, t)

∂x
+

∂cg,yE(ω, θ; x, y, t)
∂y

= S(ω, θ; x, y, t) (2.8)

In equation 2.8, E(ω, θ; x, y, t) is the energy density spectrum, cg,x is the prop-
agation velocity in x-direction, cg,y is the propagation velocity in y-direction, and
S(ω, θ; x, y, t) can include all dissipation and generation mechanisms. Equation 2.8
works with the absence of any ambient current, i.e., no frequency shifting. Detailed
treatment and discussions can be seen in Holthuijsen [2007].

Figure 2.16: Following all wave components as they traverse across the ocean. A brief
schematic outlining the process involved in predicting wave spectrum at a given
point [Holthuijsen, 2007].

The phase-averaged model provides a robust and effective way to replicate wave
transformation over a given geographic domain for a given time. Considering the
minimal computational requirement (in relative terms) and efficient prediction of
wave transformation parameters, the phase averaged models provides sufficient de-
tail for limited computational effort.

Advantages

• Geographic resolution is flexible for implicit time discretizations. This makes
the model design scalable in resolution as required

• Computational effort is lower

• No special requirement in terms of grid points for representing short wave-
lengths in the model

Shortcomings

• Parameterized source and sink terms (right hand side of the equation 2.8)
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• Based on the linear wave theory which assumes linear waves while the waves
within the surf-zone are almost always non-linear in nature, thus requiring
parameterization of such non-linear processes.

• Output variables are extracted based on the associations and correlations be-
tween the wave spectrum and the variable of interest

2.5.2 Phase Resolving Models

Phase resolving models resolve the free surface [ζ(x, y, t)] at the discretized points,
unlike the phase averaged models which only compute the statistics based on the
wave-action/wave-energy balance. The most widely used unsteady flow models
have been based on the Boussinesq equation which are depth averaged version of
the original 3-D wave equations. This limits the applicability of Boussinesq type
models to shallow water regimes (Depth ≯ Wave Length). However, the develop-
ments in SWASH no longer limit (to a certain extent) the usage of phase resolving
models to the shallow water criterion (See Zijlema et al. [2011] for details).

Simplified version of the Navier-Stokes equations yields the nonlinear shallow
water equations. This simplified form leads to a faster computation at the cost of
loss of information. This set of equations only yields the depth averaged velocity.
The phase resolving model thus provides a reasonable improvement over the phase
averaged description of the flow while still limiting the computational time.

Advantages

• Resolves the phase of the waves explicitly at a finer resolution in comparison
to the phase averaged model

• Can simulate complex near-shore processes

• Relatively efficient for large computational domains and long term wave mod-
eling applications

Shortcomings

• Wave-breaking is not explicitly resolved, but modeled using a roller analogy
or propagating bore approach

• Not all models perform in full 3D mode. Most models work in depth-averaged
modes.

2.5.3 Computational Fluid Dynamics Models

Computational Fluid Dynamics (CFD) can provide a complete description of fluid
flow within the mathematical framework of the Navier-Stokes (NS) equations. As
opposed to the previous two models, CFD is capable of resolving all the flow scales
in the computational domain. However, for practical reasons, in most cases the in-
formation about the extremely small (dissipation/Kolmogorov) length scales is not
required. Consequently, the generation and dissipation mechanisms can be mod-
eled using the Reynolds-Averaged Navier-Stokes (RANS) equations with suitable
closure approaches for the fluctuating turbulent component . These set of equation
along with the mass conservation (and possibly energy, scalars etc) constitute a CFD
modeling approach.

In this case, the interaction of air-water (interface) is important thus demanding
a multiphase fluid flow model with simultaneous interface capture capabilities. In
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order to model the multiphase flow system, the flow field should satisfy the incom-
pressible continuity equation 2.9 and the RANS equation 2.10.

∇·u = 0 (2.9)

∂ρu
∂t

+∇·ρuuT = −∇p + ρg +∇·[µ∇u + ρø] + σTκγ∇γ (2.10)

where u = (u, v, w) is the velocity field in Cartesian coordinates, ρ is the density,
p is the total pressure, g is the gravitational acceleration, µ is the dynamic fluid
viscosity, and ø = −u′u′T is the specific Reynolds stress tensor. Here, superscript T
means the transpose of a vector. The choice of turbulence closure will be presented
in the section 2.5.3. Numerical treatment of RANS closure will be discussed in
section 2.5.3. The last term (σTκγ∇γ) in Equation 2.10 represents the surface tension
interaction between the two fluids under consideration here (Air and Water).

As detailed in Rusche [2002], the use of total pressure introduces excess pressure
as seen in Equation 2.11. Here x = (x, y, z) is the coordinate vector.

p∗ = p− ρg · x (2.11)

Multiphase interface resolution follows a volume of fluid (VOF) approach which
was introduced by Hirt and Nichols [1981], which follows an indicator (scalar quan-
tity) passive advection to keep track of the interface between two/more fluids. A
detailed description can be found in Hirt and Nichols [1981] and also in Jacobsen
[2011]. The original implementation by Jacobsen [2011] used an interface tracking
method which was based on the classical VOF method by Rusche [2002]. However,
this thesis integrates the work by Røenby et al. [2016] as detailed in Section 2.5.3.

Wave generation and absorption

In order to impose wave boundary conditions7, the wave generating capabilities
within the waves2Foam toolbox developed by Jacobsen et al. [2012] were used. The
reasoning behind using this approach for wave generation and absorption has been
detailed in the following section. There are two basic (most important) requirements
in order to successfully model wave flows:

• Appropriate wave generation thus imposing the right velocity, pressure, and
phase volume fraction boundary condition (which are a transient set of bound-
ary conditions)

• A way to handle the (if any present) reflected waves from the internal domain
at the wave boundary generating location

In order to achieve the goal of wave generation and absorption, two fundamen-
tally different approaches can be used as detailed in Miquel et al. [2018].

• Passive Absorption : Involves Sponge layers at the boundaries to absorb the
reflected wave energy.

• Active Absorption : Generation of a wave opposite to that of the reflected
wave, in order to cancel the reflected wave thus absorb wave energy.

7This part of the text is based on the work by Jacobsen [2011] with some minor additions to the
current implementation of waveFlow
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The details of the passive wave generation and absorption technique will be dis-
cussed in the following section. A potential flow solution of the chosen wave theory
is first computed for arbitrary depth and values for up, ηp, and ∂pp

∂n are prescribed.
Here the subscript p refers to the potential flow solution. Assuming that the length
scale of the surface elevation is larger than the discretized boundary face (see Figure
2.17), the boundary face is intersected exactly at two points by the surface elevation
(ηp).

Figure 2.17: Sketch of a boundary face intersected by the surface, ηp , giving rise to a subdi-
vision into a wet and a dry part. The corresponding wet centre, mathb f c f ,w, is
of particular interest. Note that the boundary face can be an arbitrarily shaped
convex polygon. Reproduced from [Jacobsen, 2011].

In order to prescribe an appropriate value for the phase volume fraction (γ),
the intersection points are calculated and the ratio of the wet part of the boundary
face (shaded part in figure 2.17) A f ,w to the total area of the boundary face A f is
used to set the alpha value at the boundary. This avoids oscillatory behavior at the
boundary [Jacobsen et al., 2012]. The value for up and ∂pp

∂n are evaluated for the
wet part of the boundary face and the entire boundary face is assigned the same
value. The boundary condition for the dry part of the boundary face has a boundary
condition as detailed in Equation 2.12.

n · ∇pp = 0, u = 0, γ = 0 (2.12)

The second challenge in wave related flows is handling the reflected waves from
within the domain. There exist a variety of ways in which the wave absorbing
boundary condition/region can be handled (Adapted from [Jacobsen, 2011]).

• Apply the Sommerfeld boundary condition

• Sponge layer/Relaxation zone with appropriate damping functions

• Sponge layers/Relaxation zone with appropriate blending functions

The first of the above mentioned approaches only works as long as the long wave
assumption holds. As a result, applying the Sommerfeld boundary condition is not
a viable option since for a given wave climate, there is a mix of short (wind) waves
along with some long waves. The use of sponge layers with damping functions re-
quires the calibration of damping and the width of the sponge layer. Consequently,
the use of blending function along with the relaxation zone proves to be a better fit
for the type of wave modeling applications used in this study. The use of blending
functions within the relaxation zone can modify an incoming wave field to a target
function. The allows the use of this type of formulation at the inlet boundary to
handle reflected waves along with its use at the outlet boundary. The relaxation
zones work as a blend between a target solution and the computed solution. An
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example of the relaxation zone setup can be seen in Figure 2.18. The details of the
implementation can be seen in Jacobsen [2011].

Figure 2.18: Sketch of the variation of the blending function, αR, in both the inlet and outlet
relaxation zones.

As discussed in the preceding section, there are multiple methodologies avail-
able within the CFD framework to generate and absorb waves in a numerical wave
tank. However, each of these techniques has limitations on how it handles reflec-
tion. Miquel et al. [2018] showed that the two distinct methods of wave generation
and absorption have different behavior based on the type of wave present in the
numerical wave tank. To summarize this section, the following conclusions can be
drawn [Miquel et al., 2018]:

• The relaxation zone technique provides better wave generation and absorption
techniques for short and steep waves. However, this comes at the expense
of higher computational cost in comparison to other techniques mentioned
above.

• The active wave absorption technique developed by Higuera et al. [2013]
within the OpenFOAM framework provides an efficient result in comparison
to the relaxation zone technique as introduced by Jacobsen et al. [2012] for
long waves.

• For analysis of breaking wave kinematics, the relaxation zone technique seems
to be more suitable Miquel et al. [2018].

Given that the focus of this thesis is to first analyze the breaking wave hydrody-
namics and extend the simulation for short (wind) waves, the use of the relaxation
zone technique for wave generation and absorption will be used based on the work
done by Jacobsen et al. [2012].

Turbulence modelling

As discussed in Section 2.3, turbulence is a result of the non-linear growth of in-
stabilities which give rise to chaotic motion, eventually transforming to heat where
most part of the energy is dissipated. In most numerical models using a RANS
approach, this generation, transport, and dissipation of turbulent kinetic energy is
modeled by means of convection-diffusion equations of scalars. A simple equation
describing this convection-diffusion process can be seen in Equation 2.13.

∂φ

∂t
+∇ · (Vφ) = Sφ − Dφ +∇ · (κ∇φ) (2.13)

where φ is the transported scalar quantity, Sφ is the generation of the scalar quantity,
Dφ is the dissipation of the scalar quantity , and κ is the diffusivity constant. Each
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turbulence model has such a transport equation detailing the motion of the specified
scalar. The scalar in this case can be the turbulent kinetic energy (k) or the specific
dissipation rate (ω) in the case of the standard k−ω closure. The turbulence closure
consists of two such convection-diffusion equations for k and ω = k/ε respectively
[Speziale et al., 1990]. The eddy viscosity is used to model the Reynolds stresses
through the relationship

ø = 2νtS−
2
3

kI (2.14)

where S is the mean rate of strain of the flow. Thus the molecular viscosity is added
to the eddy viscosity in this approach. As a result, the diffusive transport term in
the scalar convection-diffusion equation can be simply expressed as follows for k
and ω respectively

∇ · [(µ + ρσ∗νt)∇k] (2.15)

∇ · [(µ + σω
k
ω
)∇ω] (2.16)

Three distinct flow regimes can be observed in free surface wave propagation as
seen in Figure 2.19. Region of potential flow is characterized with finite strain,
consequently, bounded turbulence kinetic energy (TKE) is expected in these re-
gions. However, the numerical investigations using a RANS approach have shown
marked tendency to overpredict the turbulence levels within this potential flow re-
gion [Larsen and Fuhrman, 2018]. Higher turbulent kinetic energy in regions of
potential flow regime introduce erroneously higher turbulent viscosity. As per the
diffusion term in Equation 2.15. the eddy viscosity is added to the molecular vis-
cosity. As a result, any unbounded growth in TKE results in higher eddy viscosity
through the relationship

νt =
k
ω̃

(2.17)

this effectively results in a thicker fluid (higher viscosity) and thus damping of the
propagating wave. Consequently, controlling the unbounded growth in TKE values
in regions of potential flow is important.

Figure 2.19: Schematic depicting the three distinct flow regimes in wave propagation. Here
< indicates the corresponding Reynolds number regime.
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This problem was initially investigated by Mayer and Madsen [2000], where they
showed analytically the unstable behavior of the standard k−ω based closure when
applied in a region of potential flow. This lead to an exponential growth in TKE
and thus the eddy viscosity. First attempts were made by Madsen et al. [1997] to
resolve this issue by including the mean rotation rather than the strain rate. Further
attempts to solve this problem were made by Devolder et al. [2018], however, this
did not solve the problem completely. The overproduction of TKE was tackled by
the investigation done by Larsen and Fuhrman [2018] where they showed that all
two equation based closure models suffered from this issue and also provided the
stabilization approach to avoid unbounded growth of TKE before wave breaking in
the potential flow region.

In order to limit the production of TKE in the potential flow region, Larsen and
Fuhrman [2018] proposed the two stress limiting coefficients viz., λ1 and λ2. The
modified closure proposed by Wilcox [2006] introduced a stress limiter (λ1) thus
limiting the eddy viscosity in the regions where turbulence production exceeded
the dissipation. Larsen and Fuhrman [2018] proposed a generalized ˜̃ω as follows

˜̃ω = max[ω, λ1

√
p0 − pb

β∗
] (2.18)

in addition to this term, a modification to the ω̃ in Equation 2.17 was also proposed

ω̃ = max[ ˜̃ω, λ2
β

β∗
p0

pΩ
ω] (2.19)

where λ2 << 1 is the additional stress limited which defines the threshold of pΩ/p0.
This identifies the potential flow region. Consequently, the turbulence closure is
stable as long as the condition in Equation 2.20 is true. The value for λ1 = 7/8 =
0.875 as proposed by Wilcox [2006], while the value for λ2 should be naturally small
but at the same time also large enough for practical applications. This is because
even in purely potential flow regions where pΩ = 0, the growth rate of TKE is
given as Γ∞ = −β∗ω∞. As a result, some production is always expected even in
purely potential flow regions. Hence, a value for λ2 < 0.28 can be used for practical
applications [Larsen and Fuhrman, 2018].

pΩ

p0
≤ λ2 (2.20)

In order to specify boundary condition values for the inlet phase, the following
formulation replicated from Larsen and Fuhrman [2018] has been used. The TKE
inlet specification is computed using the period and depth averaged production as
mentioned in Equation 2.21.

〈〈p0〉〉 =
k2

w H2σ2
w

2tanh(kwh)
(2.21)

where 〈〈p0〉〉 depth and period averaged turbulent kinetic energy production, kw is
the wave number, H is the wave height, σw is the angular frequency, and h is the
water depth. The value for specific dissipation rate is given by the expression

ω∞ = 2.71
√
〈〈p0〉〉 (2.22)

8The upper limit for λ2 ∼ 0.2 is a practice limit and has not been mentioned in the investigation by
Larsen and Fuhrman [2018]. This value stems from personal communication with Larsen and Fuhrman
[2018].
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The details of the turbulence closure and the definition for the closure coefficients
can be found in Wilcox [2006] and Larsen and Fuhrman [2018].

The results from Larsen and Fuhrman [2018] show improved performance of the
wave breaking, undertow, and TKE profiles within the surf zone. However, getting
the wave kinematics along with the right undertow profiles seems to be an unsolved
problem still. Larsen and Fuhrman [2018] also acknowledge the discrepancy in
the undertow profile prediction by the stabilized closure. However, given that the
overproduction of turbulence is limited in the new stabilized closure, these new set
of closures will be used in the thesis work.

Interface advection for two-phase flows

Multiphase flows within CFD provides a wide range of methodologies to handle
the multiple fluid phases. One of the most popular methods to handle interface be-
tween two or more fluids is the volume-of-fluid (VOF) approach. In this method, an
initially specified volume fraction is redistributed within the computational domain.
The VOF technique can be further be divided into two categories:

• Geometric method: Explicit reconstruction of the interface from the volume
fraction data. Generally more expensive and difficult to implement.

• Algebraic method: No such reconstruction employed. Generally less expen-
sive and easier to implement.

As detailed in Larsen et al. [2018], the interFoam solver suffers from diffusive
interface capture. This can have negative impact on the wave overtopping measured
as a result of excessive flux registered over the overtopping faces. This study also
details the effect of using low Courant number for long term wave propagation as it
results in oscillatory behavior around the interface. Considering these issues in the
numerical treatment of the interface, an alternative approach will be used to cap-
ture the free surface in this study. The interface advection method used is based on
the work done by Røenby et al. [2016]9 and it retains the accuracy of the geometric
schemes keeping the corresponding operations to a minimum. The details are as
discussed in the sub-section below. The isoAdvection approach is divided into
three fundamental steps as listed below:

VOF formulation

For a given computational domain D ∈ R3 which contains a surface S embedded
in it. Assuming two immiscible fluids A and B, the surface S follows A ∩ B = S
and A ∪ B = D. This surface can also be represented as density field such that
fluid A has density ρA while fluid B has density ρB. Naturally, the interface is the
discontinuity since the two fluids are immiscible and only one fluid can exists at a
given location, consequently demanding only one density value at a given spatial
location. The evolution of the interface is thus given as an integral form of the
continuity equation,

d
dt

∫
V

ρ(x, t)dV = −
∫

∂V
ρ(x, t)u(x, t) · dS, (2.23)

here the equation simply prescribes a mass conservation formulation such that the
rate of change within an arbitrary volume V ∈ D is equal to the flux of the mass
through its boundary ∂V . In this case of purely advecting volume-fraction problem,

9This part of the text is based on the work done by Røenby et al. [2016]
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the velocity field is pre-determined, hence, the different densities can be excluded
from the description by means of an indicator field as described below,

H(x, t) ≡ ρ(x, t)− ρB
ρA − ρB

, (2.24)

here the indicator field H = 1 for all x ∈ A(t), and H = 0 for x ∈ B(t). In order
integrate over the volume, some mesh definitions need to be placed. For a given
computational grid as shown in Figure 2.20, the shared boundary between two cells
is called as an internal face, while the shared faces between the cell and the boundary
of the domain are called as boundary faces.

Figure 2.20: Schematic of a simplistic computational grid depicting the boundary of the
computational domain (thick black line) while the red line indicates a fictitious
fluid interface. The hatched red region represents one of the fluid with density
(ρA) while the empty white region represents fluid with density (ρB)

Using the prescribed mesh definition (also see Røenby et al. [2016]), the volume
integration can be expressed in terms of the cell (say i),

d
dt

∫
Ci

H(x, t)dV = − ∑
j∈Bi

sij

∫
Fj

H(x, t)u(x, t) · dS, (2.25)

using the indicator field and the volume average, the volume fraction can be defined
as,

αi(t) ≡
1
Vi

∫
Ci

H(x, t)dV, (2.26)

here the subscript i denotes the cell index that will be used to identify the cell
within the computational domain. Now integrating Equation 2.25 from time t to
t + ∆t after substitution of the volume fraction definition yields,

αi(t + ∆t) = αi(t)−
1
Vi

∑
j∈Bi

sij

∫ t+∆t

t

∫
Fj

H(x, t)u(x, t) · dSdτ, (2.27)

this form above represents the exact form (without any numerical approximations)
of the interface advection problem which needs to be solved. The time integration
on the right hand side of the equation solves for αi and thus the surface S in time.
Using additional simplification for the time integral (see Røenby et al. [2016]), the
fundamental equation for volume fraction can be represented as,

αi(t + ∆t) = αi −
1
Vi

∑
j∈Bi

sij∆Vj(t, ∆t) (2.28)
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using the above formulation for the volume fraction and the cell averaged velocity
(ui(t)) along with the face flux (φj(t)), isoAdvection represents one of the most
effective ways to compute the transport of the fluid (αi) across the domain in the
time interval [t, ∆t].

Interface reconstruction step

The distribution of the volume fraction using the approach as described above can
result in non-singular configurations within a given computational cell. For exam-
ple, a volume fraction of 0.5 can be represented in multiple ways as seen in Figure
2.21.

Figure 2.21: Fluid representations within a computational cell for the same volume fraction
of αi = 0.5 with different configurations.

Considering this issue, a subgrid model which can handle these interfaces is re-
quired to differentiate the various configurations based on information available at
time t within the given cell. An implicit assumption which is quite important in the
application for wave models is that the local radius of curvature is larger than the cell
size Røenby et al. [2016]. Consequently, resolving individual blobs of fluid smaller
than or equal to the grid cell size become infeasible using this approach. However,
in most cases, this level of detail is not required.

Using an iso-surface for a given volume fraction (say αi = 0.5) can provide a
good estimate of the local fluid distribution as along as the assumption mentioned
above is satisfied. However, this demands a logical choice for the volume fraction
value. To resolve this issue, Røenby et al. [2016] propose a method to find an op-
timal volume fraction value which represents the local distribution of the volume
fraction within the cell. It is important to note that this results in a curve which is
not continuous as would be in curve connected by the same volume fraction values.

Advection step

In order to advect the volume fraction values, the integrand in Equation 2.27,
demands the velocity field at time t + ∆t. However, in most segregated solvers the
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velocity information is only available up until time t. Assuming that the velocity is
constant over the time step10 and the face flux is defined as,

u(x, t) · dS ≈
φj(t)
|Sj|

dS ∀x ∈ Fj and (2.29)

using this information, the following can be formulated (for details see Røenby et al.
[2016]),

∆Vj(t, ∆t) ≈
φj(t)
|Sj|

∫ t+∆t

t
Aj(τ)dτ. (2.30)

A critical assumption is that the velocity field is constant in both time and space.
Equation 2.30 is exact, which means if the cell becomes sufficiently small compared
with the temporal variations in the velocity field, the error committed in the above
formulation is negligible Røenby et al. [2016]. The central challenge in most VOF
methods as discussed by Røenby et al. [2016] is to reconstruct the time evolution
within a time step of the submerged are of the face followed by the integration of
this area in time. The time scale on which Aj(τ) changes is dictated by:

• Orientation of the faces and the fluid interface

• Direction of motion of the interface

• Shape of the specific polygonal faces.

As discussed in the previous sections, the discontinuous nature of Aj(τ) makes
∆Vj(t, ∆t) non-differentiable thus rendering the advection problem relatively diffi-
cult to solve. The isoAdvection algorithm calculates Aj(τ) for face j using the
upwind cell of face j at time t for the first estimate. The motion of the isoface in
a time step window of [t, ∆t] can be approximated by using the velocity data in
the surrounding cells. Figure 2.22, shows one such example of advecting isoface at
three different locations (taken from Røenby et al. [2016]).

Figure 2.22: (a) A spherical surface cutting a polyhedral cell. Red dots are the edge cutting
points. Blue lines are the face–interface intersection lines. Green patch is the
isoface. (b) The isoface motion is estimated from surrounding velocity data and
the isoface is propagated. Isoface at three different times within a time step are
shown. [Røenby et al., 2016]

This VOF technique promises shape preservation, volume conservation, bound-
edness, interface sharpness, and efficiency. Consequently, it will be used to carry
out a comparative analysis for overtopping volumes against waveFoam.

10The assumption is based on the fact that velocity does not drastically change within a given time
step. As a result, a small Courant number gives better description using this method. This is inline with
most of the VOF approaches except for the development of oscillatory currents as discussed in Section
3.
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2.5.4 Modeling large time and space domains

In most of the coastal studies an accurate description of the wave transformation
from offshore conditions to onshore conditions is required. Replicating such a sys-
tem by means of a numerical model requires the inclusion of the right offshore and
onshore flow conditions. In addition to the large spatial domain, which is often
times in the order of O(102) m11, wave run-up and overtopping studies require
large number of waves to derive statistical inferences and this would require a time
domain replication of about 2 hours ∼ 7200 s. In most cases the Reynolds number
for typical coastal flow applications can range from 105 to 109, thus rendering Di-
rect Numerical Simulations computationally unfeasible. The requirement of large
spatial and time domain can increase the computational time even with a RANS
closure to unfeasible limits. Consequently, making any coastal investigations using
fully non-linear CFD approach impractical.

Figure 2.23 shows the two distinct regions present in the cross shore region of
a typical coast. Most of the offshore region is characterized by a ’potential flow’
region where there is no turbulence present. Wave breaking and other deep water
mechanisms can introduce non-linear growth of surface instabilities thus introduc-
ing turbulent motion across the depth of the fluid. Since there is relatively negligible
turbulence present in the offshore regions, explicit resolution of the wave dynam-
ics/kinematics in this region does not require a fully non-linear CFD model. It is
only in the region close to wave breaking and deep inside the surf zone that the re-
quirement of resolving wave breaking and associated physics becomes crucial. As a
result, modeling large spatial and time domains can be optimized by coupling two
different models. In this case, the offshore region can be numerically represented us-
ing a non-linear ’potential flow’ model named OceanWave3D [Engsig-Karup et al.,
2009] while the rest of the domain can be represented in the fully non-linear CFD
model such as OpenFOAM. The details of the CFD model have been discussed in the
the preceding section, the following section will discuss the computational details
for the potential flow model.

Figure 2.23: Spilling waves breaking over a slope conforming to the studies done by Ting
and Kirby [1994]. The dark colored region represents normalized turbulent
viscosity νt.

OceanWave3D is a flexible-order, finite-difference based numerical model which
provides fully non-linear solution to potential flow problems for waves on a fluid
of variable depth. The time varying physical domain is mapped to a time invari-
ant boundary-fitted computational domain to obtain the numerical solutions for
unsteady free-surface flows. Since wave overturning is not resolved due to the lim-
itation of the single valued free surface, wave breaking is modeled by means of a

11at prototype scale
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dissipation term in the system. In this context, it becomes appropriate to solve the
Euler equations as opposed to solving the pure potential flow equations. Conse-
quently, the current approach is transformed from a Laplace solver to a Poisson
solver [Engsig-Karup et al., 2009].

Formulation of the problem

Using a Cartesian coordinate system12 with the xy-plane located at the still water
level and the z axis pointing upwards, the water depth can be defined using h(x)
with x = (x, y) the horizontal coordinate. Now assuming inviscid fluid and irrota-
tional flow conditions, the fluid velocity (u, w) = (u, v, w) = (∇φ, ∂zφ) can be used
to define the gradient of the scalar velocity potential. Using this construction, the
free surface evolution is governed by the kinematic and dynamic boundary condi-
tions,

∂tη = −∇η · ∇φ̃ + w̃(1 +∇η · ∇η) (2.31)

∂tη̃ = −gη − 1
2
(∇φ̃ · ∇φ̃ + w̃2(1 +∇η · ∇η)) (2.32)

solving for w̃ and evolution of the system of equation requires the solution to the
Laplace equations where φ̃ and η are prescribed. Together with the kinematic
boundary conditions, no flux across the solid walls boundary condition, the so-
lution for the wave problems can be obtained (See Engsig-Karup et al. [2009] for
details).

This approach ensures that the computational time is limited to feasible limits
and large scale domains can be replicated in the numerical wave tank.

12This part of the text is mainly based on Engsig-Karup et al. [2009]
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outline
This chapter provides a brief introduction to the process of combining the isoAd-
vection [Røenby et al., 2016] capabilities along with the waveFoam [Jacobsen et al.,
2012] solver. This will be followed up by a proof of concept test case which will aim
at the comparison of waveFlow and waveFoam. The results section will capture
the most important aspects such a comparison. In the concluding section, some
motivation will be presented in order to use the new solver for further investigation
of wave hydrodynamics.

3.1 waveflow development
The traditional waveFoam solver originally created by Jacobsen et al. [2012] was
based on the generalized Volume Of Fluid (VOF) method to model multiphase
wave flow. Since this solver was based on the interFoam solver in the OpenFOAM
framework, it also suffered from the shortcomings of diffusive interface capture
method. As outlined by Larsen et al. [2018], the interface capture in interFoam
solver is smeared over several cells depending on the grid size used. In the original
implementation, a compression velocity is used to limit this smearing. However,
this leads to some undesired effects such as wiggles over the interface as seen in
Figure 3.1. Although, this study brings to light the possibility of obtaining relatively
good results, they show that this demands a relatively small Courant number and
first order time marching (Euler type) to avoid unphysical wiggles in the solution.
This directly translates to higher computational cost due to the lower Courant num-
ber criterion (also see Section 1.1) and higher time marching error due to diffusive
nature of the Euler time discretization.

Figure 3.1: Snapshots at a) t = 5.5T and b) t = 16.25T, illustrating the appearance of small
wiggles in the crest after sufficiently long propagation. Adapted from [Larsen
et al., 2018].

35
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As described in Section 2.5.3, the sharp interface captue technique can be used
to avoid these numerical wiggles. This motivates the implementation of the isoAd-
vection scheme developed by Røenby et al. [2016]. Since the wave boundary
conditions are already well established and validated in the waves2Foam library
[Jacobsen et al., 2012] within OpenFOAM. Details of the integration of the two li-
braries have been detailed in Appendix A.

3.2 sensitivity test setup
In order to assess waveFlow and its performance, a conceptual calibration test
setup was though of and tested against waveFoam. The test case domain layout
is as described in the Figure 3.2. Since wave surface elevation and overtopping
discharge was assumed to be affected by the interface capture method used, these
two parameters were assessed for this test case.

Figure 3.2: Schematic of the calibration model setup with a side view.

The incident wave conditions for the test case are as described in Table 3.1. Since
the choice for choosing the wave types was free, the simplest wave types were cho-
sen to minimize the complexity of the model. The sampling plane represents the
location across which the overtopping discharge is assessed. The grid resolution
used in both the solver simulations was 1 [cell] : 0.025 [m]. The stabilized turbu-
lence closure models as developed by Larsen and Fuhrman [2018] have been used,
specifically the k−ω model with the stability parameter of λ2 = 0.05 has been used
in this particular case. The overtopping function utility as discussed in section 3.1
has been used for the test case in order to compare the overtopping discharge across
the sampling plane.

Table 3.1: Wave conditions

Solver Wave Type Wave Height [m] Wave Period [s]
waveFoam cnoidal 0.3 2.1
waveFlow cnoidal 0.3 2.1

3.3 sensitivity test results
In order to compare waveFlow, key parameters like surface elevation, overtopping
discharge, cumulative overtopping volume, and fluid structure interaction behavior
will be compared against waveFoam. Some of the previously listed parameters are
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qualitatively compared while some of them are quantitatively compared against
each.

3.3.1 Surface Elevation

Surface elevation function utility within the waves2Foam library was used to mea-
sure the time series at specific locations within the computational domain. The
wave gauge locations within the domain can be seen in Figure 3.3. A total of 100

wave gauge time series were sampled for the given locations. The time series was
sampled every 0.001 s i.e., frequency of sampling = 1000 Hz.

Figure 3.3: Depiction of wave gauge locations within the computational domain. The num-
bers below represent approximately the wave gauge number.

As seen in Figure 3.2, the first 4 m of the domain belong to the relaxation zone
where all of the reflected spectrum is absorbed. It is clearly seen that there is no
appreciable difference between the water surface elevation profiles within the relax-
ation zone. This is expected since, the relaxation zone will try to impose the incom-
ing wave conditions where the free surface is explicitly specified by the boundary
condition without significant wave transformation due to numerical and bottom
surface changes. Both the solvers seem to behave identically within the relaxation
zone.

However, comparison of the surface elevation time series outside the relaxation
zones tells a different story altogether. As seen in Figure B.2, the waves are trans-
formed due to the change in the bathymetry and also due to the reflection of the
incident waves form the vertical structure and the sloping beach profile. A closeup
view for a few waves at wave gauge number 60 can be seen in Figure 3.4. One wave
gauge is located every 0.1222̄ m within the domain. As a result, wave gauge 60 is
approximately located at x ∼ -0.66 m with reference to Figure 3.2. Although the
figure 3.4 shows that the two solvers are able provide a general picture of the wa-
ter surface elevation, the subtle differences between the wave shape and amplitude
of the water surface elevation are to be noted. A video render of the differences
between the flow field for interface capture have been published at the following
hyper-link1.

The wave transformation over the slope is clearly captured in Figure 3.5. This
time series corresponds to wave gauge 82 which is located x ∼ +2 m in the compu-
tational domain. There seem to characteristic differences between the wave surface
elevation amplitudes for the two wave solvers. It is also interesting to note that both
the solvers almost identically follow each other with respect to the wave behavior.

1Link to the video: https://youtu.be/CHa57xGN89o

https://youtu.be/CHa57xGN89o


3.3 sensitivity test results 38

Figure 3.4: Close up view of the surface elevation comparison for wave gauge 60 which is
located at x ∼ -0.66 m in the computational domain.

Figure 3.5: Close up view of the surface elevation comparison for wave gauge 82 which is
located at x ∼ +2.0 m in the computational domain.

3.3.2 Overtopping behavior

Overtopping is sensitive to the approach which is used to resolve the air-water inter-
face in the numerical model. Once the wave impacts the structure (See Figure 3.6),
the horizontal momentum is generally transformed into splash of fluid going verti-
cally upwards. The bulk of the fluid will be transformed into small but dispersed
set of fluid parcels/packets. Given the limitation of the interface capture methods,
obtaining this behavior in the numerical model can prove to be challenging. How-
ever, the use of isoAdvection can help overcome this difficulty to a certain extent.
In order to compare the differences between the interface capture, a series of nu-
merical model results are compared to observe the qualitative differences between
the interface capture method. The behavior of the fluid after interacting with the
vertical wall can be seen in the Figure 3.7.
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Figure 3.6: Interaction of incoming waves with a solid boundary.

(a) T = 51.540 s

(b) T = 52.040 s

Figure 3.7: Comparison of the numerical results for the two solvers under investigations.

Two methods were used to address overtopping sampling for the given sensitiv-
ity test as listed below:

• Face flux measurement (F)

• Cell center velocity measurement (U · αw ∼ Uwater)
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The fundamental difference between the two parameters can be seen in the Fig-
ure 3.8 below. The face flux for each face depcits the conserved flux of fluid passing
through the face which is also used to solve the momentum equation, while the
cell center value is derived from a vector sum of the face flux values and stored
at the cell center. Since the face flux is used to solve the equations, it gurantees
mass conservation while the cell center velocity value does not always gurantee
mass conservation. This demands the use of face flux value in order to sample
the overtopping flux passing through the prescribed overtopping faces. In order
to assess the differences between the two parameters, the analysis presented below
was considered. Since the cell centered value does not gurantee mass conservation,
the face flux approach will be considered in the following sections for overtopping
measurement.

Figure 3.8: Computational grid depciting the face flux and the cell center velocity for a finite
volume type discretization.

In addition to the visual inspection, the overtopping time series for one such
wave cycle has been demonstrated in Figure 3.9. Complete time series and ad-
ditional wave overtopping comparisons can be found in Appendix B. The rate of
sampling for the overtopping function utility was varying since overtopping was
logged every time step of the numerical model. In general the overtopping results
are stored every ∼ 0.001 s of the simulation time. The discharge indicated in this
figure is instantaneous discharge.

There are systematic differences between each of the approaches and solvers
used to calculate the instantaneous overtopping for the test case. Some of the key
observations can be listed below:

• The isoAdvection interface capture method is able to resolve the smaller
parcels of fluid which can be easily seen in Figure 3.7.

• The interface capture by isoAdvection does not show any appreciable wig-
gles/oscillations which can be observed in the traditional VOF simulation.
This can be seen in the Figure 3.7b.

• The calculation of overtopping when using the formulation Uwater = U · αwater,
does not result in the accurate computation of the instantaneous overtopping
discharge. This is due to the difference between the face flux value and veloc-
ity value in the Finite Volume discretization method.

• Different behavior in terms of the amplitude and phase of the overtopping
time series can be observed when comparing waveFlow and waveFoam solvers.
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Figure 3.9: Overtopping function utility calculation for one wave cycle. The wave cycle cor-
responds to the wave at time T = 51 s.

Interestingly the water elevation comparison within the storage tank behind
the vertical wall also displays very different behavior for the two solvers. Figure
3.10 shows that lower overtopping volume is predicted by the waveFlow solver
in comparison to waveFoam. This can also be seen in Figure 3.11 that shows the
cumulative overtopping time series.

Figure 3.10: Water surface elevation inside the tank at location x = 11.61 m

The differences between the two solvers can be distinctly visualized by plotting
the overtopped volume of water as a function of time. In order to arrive at the
cumulative value of overtopped volume of water, equation 3.1 was used. The time
series of the cumulative overtopping volume can be seen in Figure 3.11.

V = q̇∆t (3.1)
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where V = Instantaneous overtopped volume [m3], q̇ is the instantaneous overtop-
ping discharge [m3/s], and ∆t is the time step [s].

Figure 3.11: Cumulative overtopped volume time series for comparison of the two solvers.
The cumulative volume has been computed using equation 3.1.

Despite the lack of any experimental comparison, this proof of concept test dis-
plays the crucial differences between the two solvers used to carry out wave simu-
lations. It is interesting to note the overprediction using the waveFoam solver for
identical model setup. This can be attributed to the diffsued nature of the interface.
Based on this quick proof of concept test and the distinct overtopping behavior re-
sults, the new solver waveFlow was chosen to investigate the behavior for shallow
foreshore environments.



4 N U M E R I C A L M O D E L S E T U P

outline
This chapter details the numerical model setup used in this particular investigation.
A brief overview of each of the experimental setups and the corresponding numer-
ical model settings will be discussed. Section 4.1 details the case setup followed
by Larsen and Fuhrman [2018] for the Ting and Kirby [1994] experimental repli-
cation/validation. This will be followed by the Flanders Hydraulics experimental
investigations.

4.1 reference case study by Ting and Kirby [1994]
This experimental campaign focused on mean flow and turbulence under spilling
and plunging breakers. The details of offshore wave conditions generated in the ex-
perimental studies by Ting and Kirby [1994] can be seen in table 4.1. A laser-doppler
anemometer was used to extensively probe the flow field for velocity measurements.
Periodic cnoidal waves were generated for at least 20 minutes before the sampling of
data began. In order to minimize the error in ensemble averaged quantities, about
102 waves were averaged. Considering the quality of experimental data produced
by Ting and Kirby [1994], benchmarking new developments in the numerical model
can be based on this particular dataset.

Figure 4.1: Schematic of the experimental setup with a side view. The experimental flume
had a false bottom of plywood with 0.6 m width [Ting and Kirby, 1994].

Table 4.1: Wave conditions (subscripts 0,h, and b denote deep water, horizontal region and
breaking point) [Ting and Kirby, 1994]

Breaker Type H0 [m] Hh [m] T [s] H0/L0 [-] xb [m] db [m]
Spilling 0.127 0.125 2.0 0.02 6.4 0.196

Plunging 0.089 0.128 5.0 0.0023 7.795 0.156

Since new solvers in OpenFOAM have been used in the current thesis, a pre-
calibration for qualitative understanding and baseline testing had to be consulted
for understanding the deficiencies and improvements. This proof of concept test

43



4.1 reference case study by Ting and Kirby [1994] 44

has been discussed in chapter 3. Based on the results and discussions from chapter
3, the new solver has been used for all further investigations in this thesis.

4.1.1 Numerical grid

The numerical flume is used to replicate the experimental setup as discussed in the
previous section. The blockMesh utility in OpenFOAM was used to generate the
numerical grid. The details of the grid and other setup can be found in Appendix
C. The generated grid can be seen in Figure 4.2. The size of the first computational
cell has been based on a similar study carried out by Larsen and Fuhrman [2018].
Since a RANS turbulence closure is employed, the wall boundary conditions for
the turbulence parameters require a wall function. As discussed in section 2.5.3
and Larsen and Fuhrman [2018] and Brown et al. [2016], setting the first grid size
equal to 7.5 · 10−4m ensures that the relationship in equation 4.1 holds [Larsen and
Fuhrman, 2018].

Figure 4.2: Computational grid generated using blockMesh. The schematic depicts a few
grid features such as the use of inflation layers and the boundary conditions used
in the model.

∆z+ = ∆zU f /ν < 30 (4.1)

In addition to eh specification of the z+ distance, the Nikuradse equivalent sand
roughness has been set to ks = 10−4m, since the plywood false bottom was men-
tioned in the experimental setup [Ting and Kirby, 1994].

4.1.2 Turbulence initial conditions

The RANS k−ω turbulence closure with relevant stabilization [Larsen and Fuhrman,
2018] for wave applications has been used in this numerical model. Based on the
discussions carried out by Brown et al. [2016] and Pengzhi and Philip [1998], initial
conditions where k = 0 results in the transport equations (of turbulence quantities)
being singular. Consequently, a finite amount of turbulence has to be initialized
within the system. Using the formulations as discussed below, the initial conditions
for the turbulence parameters have been initialized. The initial condition for ω is
taken as ω = ω∞ = 2.71

√
p0, where p0 can be estimated using equation 2.21. Using

the values from table 4.1, the initial value for the production term is estimated to
be 〈〈p0〉〉 ∼ 0.532. Hence, the values for ω∞ = 1.977̄ and k0 = 0.1ω∞ν = 1.977̄e−07.
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The factor 0.1 in the estimation of k0 is used to seperate the initial turbulence scales
from the mean flow. The stabilized k − ω turbulence closure with the values for
λ1 = 0.875 and λ2 = 0.05 is observed to perform adequately barring the overesti-
mation/underestimation of k and ω inside the surf zone for certain parameters of
λ1 and λ2 as detailed in Larsen and Fuhrman [2018]. Consequently, for all of the
numerical studies in the following section, the values for λ1 = 0.875 and λ2 = 0.1
will be used.

4.1.3 Runtime data sampling

In order have a consistent comparison for the undertow profiles and surface eleva-
tion profiles, run-time sampling of the internal values was carried out. In order to
do this, about 100 wave gauges were placed within the domain as seen in Figure
4.3. In addition to the wave gauges, several vertical sampling lines were introduced
to measure the undertow profiles, turbulence levels, and velocity profiles as seen in
Table 4.2.

Figure 4.3: Wave gauge setup within the computational domain. The vertical black lines
represents wave gauges, while the red line shows the approximate location of
wave breaking for the spilling breaker case.

Table 4.2: Location of the vertical sampling lines within the computational domain.

Wave Gauge Name Spilling (Location [m]) Plunging (Location [m])
WG1 x = 5.945 x = 7.295

WG2 x = 6.665 x = 7.795

WG3 x = 7.275 x = 8.345

WG4 x = 7.885 x = 8.795

WG5 x = 8.495 x = 9.295

WG6 x = 9.11 x = 9.975

WG7 x = 9.725 x = 10.395

4.1.4 Model settings

A relatively long warm up period is necessary to ensure that the volume of water
within the domain is constant [Larsen and Fuhrman, 2018]. Following this approach
and the findings from Jacobsen et al. [2012], first 60 waves will be discarded from
the averaging process. As a result, the total simulation time is about 330 s. This
corresponds to approximately > 102 waves in the numerical model. This is the same
number of waves as in the experimental setup by Ting and Kirby [1994]. In addition
to the previously discussed literature, figure 4.4 from the experimental investigation
by Ting and Kirby [1994] also depicts the error in the ensemble averaging as a
function of number of waves used in the averaging process. For consistency, 102

waves from the numerical model results will be used to investigate the statistics. A
complete listing of the relevant OpenFOAM files can be found in Appendix C.
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Figure 4.4: Variation of statistics with number of waves [Adapted from Ting and Kirby
[1994]]

4.2 experimental setup for flanders hydraulics
The wave flume at Flanders Hydraulics Research (FHR) Institute was about 70 m
long, 4 m wide and 1.45 m deep (See Figure 4.5). The facility is equipped with
a piston-type wave generator with a stroke length of 0.6 m, which is capable of
generating regular and random waves with a pre-assigned spectrum. Active wave
absorption system (AWAS) was used in the experimental setup which will be under
consideration in this particular section. In the experiments, the flume was split into
4 sections as seen in Figure 4.6. Water surface measurements were logged by means
of a resistance-type wave gauge, installed at 29 locations within the experimental
flume. The sampling frequency of the wave gauge’s was 50 Hz. The location of in-
dividual wave gauges can be seen in Figure 4.7. Despite the large number of wave
gauge’s, the data for surface elevation is only available for the wave gauge as listed
in Table 4.3. Analysis of the wave height measurements were carried out originally
by Altomare et al. [2016] in the time and frequency domain using WaveLab 3.66,
software developed at Aalborg University. Classical reflection analysis based on the
work done by Mansard and Funke [1980] is based on the linear wave theory which
is generally not applicable for very shallow foreshore environments dominated by
non-linear effects. Consequently, instead of using this analysis to seperate the inci-
dent and reflected wave spectrum, the flume section with no dike (See Figure 4.7)
was used to obtain the incident wave spectrum. The presence of cross waves due to
the separation baffles within the flume was investigate, however, the difference in
wave heights across the flume width was found to be negligible.
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Figure 4.5: Wave Flume at FHR [Altomare et al., 2016]

Figure 4.6: Detailed view of the Wave Flume at FHR [Altomare et al., 2016]. The test section
which is of interest in this study is the second flume section from the right side
of the figure.

Figure 4.7: Schematic representing the wave gauge locations in the experimental flume. The
flume section tagged as 106.1 corresponds to the section which is under investi-
gation in this thesis.



4.2 experimental setup for flanders hydraulics 48

Table 4.3: Location of the wave gauge from the wave paddle in the experimental flume.

Wave Gauge Name Location [m]
WG2 3.415

WG3 7.94

WG4 8.38

WG5 9

WG6 13.94

WG7 14.84

WG8 15.54

WG25 45.54

WG26 45.79

WG27 45.96

Instantaneous wave overtopping measurements were carried out by two Balluff
"Micropulse" water level sensors inside the overtopping boxes. The instrumentation
used in the experiments can be seen in Figure 4.8. The instantaneous water level
reading from the sensor could be converted to volume by measuring the difference
in water level per overtopping wave and multiplying this number by the dimen-
sions of the overtopping box. The Balluff sensors were finally implemented in this
project to measure the average overtopping discharge, being related to the differ-
ence in water level before and after each test. The wave-by-wave overtopping was
not analyzed in detail. The overtopping box dimensions were 0.5 m wide by 2.0
m long and 0.3 m deep. Using this information, the mean overtopping discharge
was obtained by dividing the total volume of water collected during the test by the
duration of the test ∼ 35− 40 min which corresponds to about 1000 waves.

Figure 4.8: Wave gauge (left image) and micro-pulse transducer (right) used to measure the
water level in the overtopping box.

4.2.1 Numerical wave tank layout

As seen in Figure 4.5, the length of the domain is quite large in comparison to the
previously proposed test case of Ting and Kirby [1994]. Given the large computa-
tional time for CFD models, replicating wave flows in such a large domain becomes
infeasible. However, Jacobsen et al. [2018] demonstrate the coupling of a poten-
tial flow solver named OceanWave3D developed by Engsig-Karup et al. [2009] and
OpenFOAM for large domains to estimate hydrodynamics and forces on crest walls.
Following a similar approach, the computational domain can be seen in Figure 4.9.



4.2 experimental setup for flanders hydraulics 49

(a) Layout for OceanWave3D model

(b) Layout for the numerical model in OpenFOAM

Figure 4.9: Schematic depicting the computational setup used in the numerical wave tank.

Given the limited availability of the experimental results, a comparison of Ocean-
Wave3D (OW3D) and the experimental results will be carried out for WG2, WG5,
WG6, WG7, WG25, and WG26 (See Table 4.3). Wave breaking in the experimental
setup occurs at around x = 41, as a result, the time series comparison of the surface
elevation is not directly possible for the wave gauge’s in the surf zone. The strategy
to validate the numerical model is as follows.
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• Compare experimental results with OW3D for wave gauge’s WG2, WG5, WG6
and WG7. This ensures that the correct offshore wave conditions exist in the
numerical wave tank.

• To ensure that the coupling between OpenFOAM and OW3D works correctly,
the time series comparison of the surface elevation is carried out at wave
gauge’s WG@x = 34.52m.

This approach makes sure that the surface elevation signal introduced by the
wave paddle is correctly transported to the OpenFOAM domain by means of the
coupling interface between OW3D.

4.2.2 Numerical grid

In order to correctly model the coupled system, the numerical grid in both the
models should be able to adequately capture the incident wave conditions. Conse-
quently, the numerical grid in the offshore domain (OceanWave3D) was discretized
as seen in Figure 4.10 with a dx ∼ 0.026m. In order to better capture the vertical
velocity profile, vertical stretching has been used for the grid which can be seen in
the figure.

Figure 4.10: Schematic of the numerical grid used in OceanWave3D. The different lines rep-
resent the layer used in the vertical direction to solve for the momentum in Z
axis.

The time step used in the OceanWave3D setup was dt = 0.002s. The OpenFOAM
grid on the other hand used a finer grid definition with a resolution of dx ∼ 0.0068m.
The grid was generated using a high quality Finite Element Mesh generation tool
named Gmsh Geuzaine and Remacle [2009]. The grid was generated in such a
way as to keep a consistent aspect ratio of ∼ 1 in the foreshore region of the dike
based on the discussions in Jacobsen et al. [2012]. The reason for using Gmsh over
the conventional blockMesh tool within OpenFOAM was the ability of Gmsh to
produce smooth boundary conforming mesh in regions where the change in the
slope is drastic. For example, the connection between the dike and the foreshore
would result in relatively skewed grid cells if the blocking strategy used is not
good. However, with limited effort Gmsh seems to provide a faster solution for grid
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generation for such cases. Consequently, this was preferred over the conventional
approach1.

4.2.3 Model Settings

The model setup for this case is identical to the technique used in Section 4.1.4. In
order to compute the initial turbulence levels, the significant wave height and wave
period was used. Using this information, the formulations discussed for the previ-
ous test case setup were used to arrive at the initial conditions for the turbulence
model. Since this case has fundamentally different incident wave conditions in com-
parison to the previous model setup, wave generation in OceanWave3D was carried
out as described in the sub-section below.

A wide variety of options for specifying the incident wave conditions were avail-
able for however, in order to prescribe the exact wave conditions as in the experi-
mental investigations by Altomare et al. [2016], the wave paddle location recorded
during the experiment was used. OceanWave3D requires a wave paddle velocity
signal in order to produce the wave conditions, consequently,

v(t) =
dx(t)

dt
, (4.2)

was used to arrive at the wave paddle velocity. In order have better precision, central
differencing in the numerical derivative was used with appropriate handling at the
end points. This wave paddle velocity was observed to provide under-prediction in
the initial test runs as a result, the velocity signal was amplified by 5% to get the cor-
rect wave signal at the offshore boundary. In addition to this amplification, the fixed
sampling frequency for the wave paddle location and the subsequent derivative re-
sults in a ’spikey’ velocity signal. In order to smooth out these small fluctuations,
a Savitzky-Golay filter as discussed in Persson and Strang [2003]. The difference
between the filtered and the unfiltered signal can be seen in Figure 4.11.

Figure 4.11: Paddle velocity prescription in the numerical model.

1The author however does acknowledge the fact that with a good blocking strategy, blockMesh
utility would also yield a satisfactory grid.
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outline
This chapter presents the results from each of the numerical investigations carried
out in the thesis. The very first section deals with the Ting and Kirby [1994] ex-
perimental dataset which will aim to establish a benchmark for the new numerical
model setup. This chapter will discuss fundamental regular wave conditions along
with differences between spilling and plunging breaker hydrodynamics. The final
section of this chapter will explore the Flanders hydraulics experimental setup for
irregular waves and overtopping behavior.

5.1 numerical results for Ting and Kirby [1994]
dataset

The results for Ting and Kirby [1994] experiments have been simultaneously com-
pared with the studies carried out by Larsen and Fuhrman [2018]. The following
sections detail comparison of the following key parameters which will be presented
and discussed in the section:

• Surface elevation

• Turbulent kinetic energy profiles (TKE profiles)

• Velocity structure (undertow)

5.1.1 Surface elevation

In the experimental campaign by Ting and Kirby [1994], the mean, maximum, and
minimum surface elevation were sampled for the flume coordinates x ∼ −2 m to
x ∼ 12 m. These surface elevation profiles were ensemble averaged for about 102

waves in the experimental studies at each wave gauge (See Ting and Kirby [1994]).
A similar comparison was also carried out with the numerical model. As prescribed
by Jacobsen et al. [2012], Larsen and Fuhrman [2018], and Larsen et al. [2018] the
wave simulations should be preceded by atleast 30 wave periods before any statis-
tical analysis can be carried out. Consequently the first 60 s in the spilling breaker
case and the first 150 s in the plunging breaker case were discarded from the analy-
sis presented in the following section.

It was observed that reflection of the incident waves introduced some variations
in the waves outside the relaxation zone in the numerical model. This behavior
can be seen in Figure 5.1. In order to compute the maximum and minimum for
the given time series, a basic filter window was applied to locate the respective
maximum and minimum. The python script used to carry out the analysis has been
presented in Appendix section D.

53
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Figure 5.1: Surface elevation of the wave gauge located at x ∼ 5.99 m in the numerical model.
The surface elevation time series corresponds to the spilling wave breaker from
Ting and Kirby [1994]. The figure also depicts the locations of maximum and
minimum points for each wave period.

There is a systematic difference between the ensemble average method used in
Ting and Kirby [1994] and the method used to obtain the average min, max, and
mean profiles as described above in Figure 5.1. The technique used in this analysis
basically locates the maximum or minimum based on the hard-coded window. This
may introduce a bias to the higher and the lower values for given time series. Phase
averaging would involve overlaying each wave cycle over each other and then av-
eraging the values, thus possibly reducing the observed average surface elevation.
However, it is expected to not significantly change the statistics as presented in this
analysis. As a result, this method was used to carry out the wave statistics instead
of using a phase averaged approach.

Spilling breaker

Figure 5.2 shows the 〈ηmax〉 − 〈η〉, 〈η〉, and 〈ηmin〉 − 〈η〉 profiles for the spilling
breaker case. The shaded region around the maximum and the minimum profiles
represent one standard deviation envelopes on either sides of the average/mean
value. The mean surface elevation profile is captured sufficiently well prior to the
surf zone. The mean surface elevation, TKE, and undertow profiles from Larsen
and Fuhrman [2018] are compared for the stabilization coefficients λ1 = 0.875 and
λ2 = 0.05, which has been presented in Figure 5.2.

The numerical model used in this investigations captures the wave breaking
height and location sufficiently well. In comparison to the previous studies, the
waveFlow solver does not overpredict the wave height and the wave breaking loca-
tion approximately more than one standard deviation (marked by the orange enve-
lope around the black line). It was observed that the wave setup undergoes a delay
after the breaking point. This can be attributed to the roller transported after wave
breaking occurs (at around x ∼ 6.4 m) while the wave setup in the numerical model
is observed to initiate only at about x ∼ 8 m. This behavior has also been observed
in the studies carried out by Larsen and Fuhrman [2018]. Roelvink and Stive [1989]
and Svendsen [1984] suggest that this delay is attributed to the fact that the turbu-
lent kinetic energy is not immediately dissipated after breaking. A detailed analysis
of this phase lag between the wave setup and the wave breaking location was also
carried out by Jacobsen et al. [2014]. In this study Jacobsen et al. [2014] pointed out
that there is a definitive relationship between the non-dimensional lag and the surf
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similarity parameter which governs wave breaking type. This relationship is given
by the expression as described in Equation 5.1,

λ∗HS = 0.25ζ−0.7
0 (5.1)

where λ∗HS ∼ (xH − xη)/(T
√

ghB) is the non dimensional phase lag, xH is the wave
breaking location [m], xη is the location at which wave setup initiates [m], T is the
wave period [s], g is the gravitational acceleration [m/s2], and hB is the local depth.
The behavior for the two tests considered in this investigation can be seen in Figure
5.3.

Figure 5.2: Comparison of ensemble averaged surface elevation profiles for the spilling
breaker case of Ting and Kirby [1994].

Figure 5.3: Comparison of the non dimensional phase lag λ∗HS as a function of ζ0 as dis-
cussed by Jacobsen et al. [2014].

The effect of the roller transported after wave breaking can also be seen in the
large standard deviation in the maximum surface elevation plotted (〈ηmax〉 − 〈η〉)
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in Figure 5.2. The large variability in the maximum surface elevation depicts the
roller which results in wave-wave variability in the surf zone, thus resulting in a
larger standard deviation within the surf zone. Despite the large variability, the
general trend pretty much follows the experiments investigations from Ting and
Kirby [1994].

Plunging breaker

Figure 5.4 shows the 〈ηmax〉 − 〈η〉, 〈η〉, and 〈ηmin〉 − 〈η〉 profiles for the plunging
breaker case. The shaded envelope holds the same meaning as discussed in the
previous sub-section. The results from Larsen [2018] have been presented for the
same stabilization coefficients for consistent comparison.

As observed for the spilling case, the wave breaking height and the wave break-
ing location in the plunging breaker case is captured sufficiently accurately. The
standard deviation reduces close to the breaking point since the wave-wave vari-
ability close to the breaking point is almost negligible, this can be seen in Figure
5.5. As observed in the spilling case, the transported roller after wave breaking in-
troduces wave-wave variability within the surf-zone in the plunging wave breaker.
A delayed wave setup can be consequently observed in both the numerical models
seen in Figure 5.4. Considerable differences were observed in the minimum surface
elevation (〈ηmin〉 − 〈η〉) within the surf zone.

Figure 5.4: Comparison of ensemble averaged surface elevation profiles for the plunging
breaker case of Ting and Kirby [1994].
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Figure 5.5: Surface elevation close to the breaking point in the numerical model for plunging
wave breaker.

5.1.2 Turbulent kinetic energy profiles (TKE profiles)

In order to successfully compare the performance of the stabilized turbulence mod-
els for long term wave simulations, a comparison of the turbulence kinetic energy
(TKE) within the surf zone has been performed. Suitable time averaging technique
has been used to evaluate the distribution of TKE within the water column. For
practical reasons, the TKE profiles in the numerical model have only been com-
pared under the trough level. Suitable time averages were used in order to arrive at
a time averaged TKE profile. About 7 wave gauge’s were placed within the water
column to sample the results every 0.1 s (or 10Hz frequency).

Spilling Breaker

Figure 5.6: Turbulent Kinetic Energy profile comparison for spilling breaker case.
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In the Figure 5.6, the red filled circles correspond to the experimental surface eleva-
tion measurements from Ting and Kirby [1994]. The dark black lines and the orange
envelope represent the numerical model results and the corresponding standard de-
viation envelope around the mean value. The blue stars represent the experimental
measurements for the TKE at the wave gauge locations as described in Table 4.2.
The red solid line corresponds to the numerical prediction of the TKE values at
the given wave gauge locations which are represented by the dotted vertical grey
lines. As seen in the above figure, the TKE profiles seem to represent the experimen-
tal trends satisfactorily. Consequently, the stabilization parameters as used in this
investigation provide satisfactory results both in the prediction of TKE and mean
surface elevation. Figure 5.6 provides an overview of the TKE distribution for the
spilling breaker.

Figure 5.7 shows the comparison of the numerical results for the wave gauge’s
within the surf zone. A gradual overprediction is observed as we move deeper
within the surf zone. Although the results vary drastically, they are consistent
with the choice of λ1 and λ2 parameters in this thesis work. The overprediction
is attributed to the λ2 = 0.1 value. As discussed in Section 2.5.3, the role of this
stabilization coefficient is to allow the filter to switch on for a larger allowable ratio
of pΩ/p0. Consequently, a larger generation of TKE in the potential flow region
is allowed which is directly reflected in the numerical results. Since, Larsen and
Fuhrman [2018] use a value of 0.05 for this coefficient, the TKE obtained at the
same location is relatively smaller and conforms to the experimental results. It
is also important to note that the TKE profiles are weighted averaged with the
alpha fraction. This is done in order to avoid including the TKE values for the air
phase. Since the air phase in the current VOF method also has a certain TKE value,
including the results for this phase would return erroneous values above the trough
level. This process also leads to a large fluctuation closer to the region above the
trough level. This can be seen in the figures below.
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(a) WG1 (b) WG2

(c) WG3 (d) WG4

(e) WG5 (f ) WG6

(g) WG7

Figure 5.7: Comparison of TKE profile against the experimental results for the spilling
breaker. The x-axis denotes

√
(〈k〉/(gh)) while the y-axis represents (z− 〈η〉)/h.

The black line represents the current study, while the orange dotted line corre-
sponds to the results by Larsen and Fuhrman [2018] and the red stars correspond
to the experimental results by Ting and Kirby [1994].
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Plunging Breaker

Figure 5.8: Turbulent Kinetic Energy profile comparison for plunging breaker case.

Similar results have been observed in the plunging breaker case. The undertow
profiles close to the breaking point in the surf zone follow the experimental results
satisfactorily. There seems to be an over-prediction in the turbulence levels deep in-
side the surf-zone. However, this over-prediction is in-line with the results obtained
by [Larsen and Fuhrman, 2018]. These results show that new turbulence closure
results in bounded values for the turbulent kinetic energy post wave-breaking. In
comparison to the un-bounded turbulence kinetic energy results as seen in [Pengzhi
and Philip, 1998] and [Hsu et al., 2015] to list a few.

Individual result comparison with the experimental TKE profiles reveals a simi-
lar trend as observed in the spilling breaker case. The choice of λ2 parameter affects
the TKE profile resolution. The results obtained by Larsen and Fuhrman [2018] are
in agreement with the TKE profiles observed in Figure 5.9. Within the framework of
the new turbulence closure the results for TKE are bounded yet could be improved
especially deep inside the surf zone.
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(a) WG1 (b) WG2

(c) WG3 (d) WG4

(e) WG5 (f ) WG6

(g) WG7

Figure 5.9: Comparison of TKE profile against the experimental results for the plunging
breaker. The x-axis denotes

√
(〈k〉/(gh)) while the y-axis represents (z− 〈η〉)/h.

The black line represents the current study, while the orange dotted line corre-
sponds to the results by Larsen and Fuhrman [2018] and the red stars correspond
to the experimental results by Ting and Kirby [1994].

5.1.3 Velocity Structure

The velocity sampling followed a similar sampling approach with a frequency of
10 Hz. Averaging techniques similar to the ones used in the previous section were
used in order to compute the time averaged undertow profiles. The sub-sections
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below present the results for the time averaged undertow profiles for the spilling
and the plunging wave breakers.

Spilling Breaker

As seen in Figure 5.10, the undertow profiles have been adequately captured in the
numerical model. Barring some small discrepancies between the experimental and
the numerical results in the bottom part of the undertow profile, the general struc-
ture of the undertow has been substantially well represented in this case. However,
as opposed to experimental observations the top part of the velocity profile seems
to be overpredicted in the numerical model. Additionally, the maximum shoreward
velocity is not located at the SWL. These discrepancies in the upper part of the
velocity profile are not observed in the results obtained by Larsen and Fuhrman
[2018]. At the same time, they do not present the complete velocity profile above
the trough level, thus a direct comparison is not possible. The velocity profile seems
to improve with regards to the location of the shoreward maximum as we go deeper
into the surf zone after the breaking point. However, the discrepancy between the
numerical and the experimental results increases in the bottom part of the profile.
An associated higher velocity is also observed in the top portion of the velocity pro-
file which balances the overshoot in the bottom. The results in Figure 5.10 perform
relatively poorly in the regions where the TKE prediction is overshooting in the
numerical model. There seems to be a definite relationship between the prediction
of TKE profile and the velocity resolution within the surf zone.

Figure 5.10: Undertow profile comparison for spilling breaker case.

One to one comparison of the undertow profile has been presented in Figure
5.11. There is a significant under-prediction in the bottom part of the velocity pro-
file in comparison to the results by Larsen and Fuhrman [2018]. This difference
is attributed to the different λ2 parameters used in this study. However, no fun-
damental improvements have been observed in the general trend of the undertow
profile.
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(a) WG1 (b) WG2

(c) WG3 (d) WG4

(e) WG5 (f ) WG6

(g) WG7

Figure 5.11: Comparison of undertow profile against the experimental results for the spilling
breaker. The x-axis denotes 〈u〉/(

√
gh) while the y-axis represents (z− 〈η〉)/h.

The black line represents the current study, while the orange dotted line cor-
responds to the results by Larsen and Fuhrman [2018] and the red stars corre-
spond to the experimental results by Ting and Kirby [1994].

Plunging Breaker

As seen in Figure 5.12, the undertow profile suffers an over-prediction in the same
surf-zone regions where the turbulent kinetic energy is over-predicted. In the re-
gions close to wave breaking, the undertow profile has been quite accurately cap-
tured in the numerical model. The discrepancies in the undertow profile seem to be
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increasing with increasing x coordinate i.e. deeper within the surf-zone. A similar
trend is observed in the spilling case. As discussed before this shows the relation
between the velocity profile and the TKE profile. Using the same algorithm as the
spilling case for computing the mean velocity profile, it is observed that there is
no overshoot in the numerical prediction of the velocity profile before wave break-
ing. However, deeper in the surf-zone the bottom part of the velocity profile starts
to overpredict the velocity magnitude and a corresponding increase is observed
in the upper part of the velocity profile. In general, as there are no experimental
data points in the region above the trough level, a direct comparison is not possi-
ble. However, the maximum shoreward velocity is observed to be around the SWL
unlike the spilling case.

Figure 5.12: Undertow profile comparison for plunging breaker case.

Comparable results are obtained in the one to one comparison of the velocity
profile. Similar argument seems to hold in terms of the velocity prediction and the
TKE prediction for the numerical model. In general, the bottom part of the velocity
profile seems to be overpredicted and consequently the top part of the velocity
profile is also overpredicted. This is a direct consequence of mass flux balance.
A vertically integrated profile would yield zero effective velocity. Given that the
experimental and numerical data are one dimensional and not of the same size, any
statistical tests on the comparison have not been carried out.
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(a) WG1 (b) WG2

(c) WG3 (d) WG4

(e) WG5 (f ) WG6

(g) WG7

Figure 5.13: Comparison of undertow profile against the experimental results for the plung-
ing breaker. The x-axis denotes 〈u〉/(

√
gh) while the y-axis represents (z −

〈η〉)/h. The black line represents the current study, while the orange dotted
line corresponds to the results by Larsen and Fuhrman [2018] and the red stars
correspond to the experimental results by Ting and Kirby [1994].

5.2 numerical results for flanders experiments
As discussed in Section 4.2.1, the lack of data available throughout the flume do-
main for the Flanders case makes a direct comparison of the results cumbersome.
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However, as described in the same section, comparing the results individually in
different sections of the flume can provide substantial confidence that the coupled
modeling strategy is working effectively. Consequently, the results will be discussed
as listed below

• Surface elevation comparison of OceanWave3D and Experimental results in
the flume section x < 34 m. This ensures that right offshore wave conditions
are imposed in the numerical wave tank.

• Surface elevation comparison of OceanWave3D and OpenFOAM for two wave
gauges located at x ∼ 34.52 m and x ∼ 35.54 m. This ensures that the coupling
between the two models is working as expected.

• Overtopping results for the coarse mesh used in this study.

The spectral development over the flume bathymetry for the given case can be
seen in Figure 5.14. The spectrum shown in this figure correspond to the experi-
mental results. The black line plotted over the left vertical plane corresponds to the
bathymetry of the flume. The figure shows a shift in the peak frequency from the
high frequency side to the low frequency side beyond the wave breaking location
(x ∼ 39− 40m). The figure also depicts the spectral evolution inside the swash zone
where significant differences can be seen between the spectrum. There seems to
be a large shift in the spectral energy towards the higher frequency between the
last two wave gauges within the flume. However, a detailed analysis is required in
order to identify the exact source of this shift.

Figure 5.14: Spectral evolution over the flume bathymetry for the Flanders experimental
campaign. The waves are incident at flume location ∼ 0m. The spectral plots
correspond to the experimental results.

5.2.1 Surface elevation comparison of OW3D and Experiment

In order to compare the experimental results, the analyzed time series obtained
from Altomare et al. [2016] has been used. The first section of this discussion com-
pares the time series of the surface elevation along with the variance density spec-
trum for the given time slice. As seen in Figure’s 5.15, 5.16, 5.17, and 5.18, the time
series as well as the frequency comparison shows good replication of incident wave
conditions in the numerical wave tank. The potential flow solvers seems to be per-
forming quite well for relatively large waves, however, the smaller waves in a given
wave group are sometimes not resolved adequately. However, this is acceptable
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since the most interesting part of the wave group are the larger waves which results
in an overtopping event which is substantial. The frequency space shows a sig-
nificantly different peak behavior around the peak frequency for the wave gauge’s
closer to the wave paddle (See Figure’s 5.15 and 5.16). Despite this behavior the
peak frequency even with the small time domain is correctly located at ∼ 0.4425
Hz which corresponds to the peak period of ∼ 2.25 s in the numerical model. The
experimental spectrum shows a consistent multiple peak behavior where the two
(or more) peaks have similar energy.

In order to compute the variance density spectrum, it is critical to note that the
sampling frequency in the OW3D model is non-constant. As a result, carrying out
a normal Fourier transform is not possible. In this particular case, computing the
non-uniform Fourier transform also does not yield adequately comparable results.
Considering this issue, a practical approach was used to employ the mean sampling
rate for the given time series of the numerical surface elevation. This approach gives
a decent comparison of the wave spectrum throughout the analysis, as a result, it
was used to obtain the numerical variance density spectrum.

As discussed in the model setup (See Section 4.2.3), an amplification of 5% was
used to input the right wave amplitude in the numerical wave tank. This along with
the approach used to compute the spectrum could possibly explain the relatively
high peaked behavior in the time series and variance density spectrum comparisons.
At the same time, this does not explain the inadequacy of the numerical model to
capture the smaller wave amplitudes.

These results indicate that there is adequate resolution of the offshore wave
conditions in the numerical wave tank. As a result, further comparison with the
experiments can be carried out. In the following sub-section, the results for Open-
FOAM and OceanWave3D will be discussed to evaluate the coupling between the
two models.
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(a) Time Series Comparison

(b) Variance Spectral Density Comparison

Figure 5.15: Time and Frequency domain comparison of the surface elevation at WG2 (x ∼
3.415 m).
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(a) Time Series Comparison

(b) Variance Spectral Density Comparison

Figure 5.16: Time and Frequency domain comparison of the surface elevation at WG5 (x ∼ 9
m).
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(a) Time Series Comparison

(b) Variance Spectral Density Comparison

Figure 5.17: Time and Frequency domain comparison of the surface elevation at WG2 (x ∼
13.94 m).
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(a) Time Series Comparison

(b) Variance Spectral Density Comparison

Figure 5.18: Time and Frequency domain comparison of the surface elevation at WG2 (x ∼
14.84 m).

5.2.2 Surface elevation comparison of OW3D and OpenFOAM

As seen in Figure 5.19, the surface elevation comparison of the coupled numeri-
cal models shows good agreement at x ∼ 35.54 m in the domain. Although this
wave gauge lies within the relaxation zone, the lack data availability and the wave
breaking occurring at around x ∼ 41 m makes it difficult to directly compare the
OW3D and OpenFOAM results in the rest of the computational domain. The mi-
nor differences between the two models can be attributed to the relaxation zone
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and the coarse grid resolution of the OpenFOAM domain. Despite these issues, the
comparison between the two models is sufficient.

Since the offshore surface elevation comparison shows good comparison be-
tween the numerical results and the experimental results in addition to the wave
gauge within the OpenFOAM domain, it can be safely concluded that the wave con-
ditions incident in the OpenFOAM domain conform to the ones assigned at the wave
paddle. As a result, this concludes that the coupling between the two models works
as expected. This motivates further analysis of the overtopping results using the
numerical results.

Figure 5.19: Surface elevation comparison of OceanWave3D and OpenFOAM at a wave gauge
located at x ∼ 35.54 m.

5.2.3 Comparison of surf-zone surface elevations

In order to understand the distribution of the surface elevation across the surf zone,
description of the ηs,max and η was carried out. To compute the ηs,max a zero crossing
analysis was used to distinguish individual waves1. After each wave was separated,
the maximum surface elevation within each wave was identified as the ηmax[i] for
the ith wave. Using a collection of such ηmax[i] the highest 1/3rd ηmax were averaged
to arrive at the estimation of ηs,max. A sample plot used in the analysis can be seen
in the Figure 5.20 below.

Figure 5.20: Sample minimum-maximum analysis used in this investigation. The red dots
represent the maximum and minimum surface elevations as detected by the
algorithm used, while the blue curve represents the original η time series.

1The python code for this has been included in Appendix D
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Using this analysis approach the distribution of ηs,max and η has been presented
in Figure 5.21. As opposed to the Ting and Kirby [1994] results, there seems to be
no phase lag between the wave breaking location (Xb) and the initiation of the wave
induced set-up. This gives a preliminary indication that wave breaking transforms
most of the kinetic energy into turbulence, while only small amount of momentum
is retained as the roller progresses and dissipates the rest of the energy. This is true
for the bigger waves in the wave group, while the smaller waves almost all the time
convert the kinetic energy into turbulence. The larger waves in the domain tend to
break earlier while the smaller waves break later (deeper within the surf-zone) as
a result of wave steepening. On average the waves break at around x ∼ 40.79m as
predicted by the numerical model. The schematized wave flume in the figure has
been presented for reference purposes only and the still water depth at x ∼ 34m is
0.2m.

Figure 5.21: Distribution of maximum surface elevation and mean surface elevation across
the surf-zone using the waveFlow solver. The extend of the plot corresponds
to the domain within OpenFOAM (See Figure 4.9b).

5.2.4 Overtopping comparison

This section presents a comparison of the wave overtopping for three datasets viz.,
experiment, waveFoam, and waveFlow solver’s respectively. As seen in Figure B.3,
a similar over-prediction in the overtopping discharge is observed. This is clearly
seen in the cumulative overtopping comparison presented in Figure 5.23. The coarse
grid results in scalar flux advection in both the solvers even when there is not wave
incoming which results in an overtopping event. This problem is especially critical
for the waveFoam solver since the interface is relatively more diffused. As a result,
this results in a positive overtopping signal in the time period (t < 45 s) where the
experimental results show no overtopping occurring. However, the volume that is
overtopped in waveFoam is significantly higher in comparison to that in waveFlow.

The first grid cell in the coarse grid setup is relatively large in comparison to
the approach used in Section 4.1.1. This setup was used to check the overall per-
formance of the numerical wave tank setup. However, the first grid cell is where
most of the overtopping flux is concentrated since the overtopping observed in the
experimental setup is not violent in comparison to that observed in Section 3.3.2.
The localization of the flux of fluid around the first grid cell in the waveFlow solver
can be seen in the series of snapshots in Figure 5.24. The figure depicts that the
flux passing over the dike is concentrated within a single cell as it traverses over
the dike and is registered by the overtopping sampling plane as a positive instanta-
neous overtopping discharge. This leads to a peaked signal in the overtopping time
series for the waveFlow solver. However, the flux passing through the overtopping
plane in the waveFoam solver is diffused over three grid cells in the vertical direc-
tion and more than a few grid cells in the stream-wise direction, thus portraying a
more continuous and long lasting overtopping event.
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As seen in Figure B.3, the overtopping signal for waveFoam solver indicates a
positive overtopping discharge throughout the time series. This results in a positive
overtopping volume for longer time in comparison to waveFlow resulting in a
grossly over-predicted cumulative overtopping volumes.

Figure 5.22: Instantaneous overtopping discharge time series comparison of the two solvers
under consideration.

Figure 5.23: Cumulative overtopped volume time series comparison of the two solvers under
consideration. The results have also been compared to the experimental results.
The shaded region represents the actual time series of the experimental results.
The Loess fit line is basically a local regression fit to the oscillating experimental
signal.
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(a) T = 66 s

(b) T = 66.5 s

Figure 5.24: Overtopping behavior in the numerical wave tank for the waveFlow solver

Given that most of the wave energy is lost due to turbulent wave breaking in the
surf zone Altomare et al. [2016], very little momentum persists leading to run-up
followed by an overtopping event. As a result, the overtopping observed in the
numerical wave tank and the experimental are small in magnitude. However, de-
spite the coarse grid effects, waveFlow seems to be predicting overtopping volumes
closer to the experimental findings, thus confirming the underlying hypothesis in
this study. This accuracy however, comes at a 10-15 % additional computational
cost.

The results presented above correspond to the coarse mesh results with a spatial
resolution of about dx ∼ 0.025 m. Although the numerical results seem to be in
agreement to the experimental results, the lack of feasibility for a sensitivity analysis
for grid effects can possibly undermine the results. Consequently a finer grid was
considered in order to analyze the overtopping trend. However, no sensitivity study
was carried out. The grid resolution in this case was dx ∼ 0.0068m. This results in ∼
7 grid points for the smallest offshore wave height (∼ 0.0483m) and ∼ 17 grid points
for the largest offshore incident wave height (∼ 0.121m). The surface elevation
comparison for both the models are similar to what was presented in the preceding
text. The only differences observed were that in the overtopping time series. As
seen in Figure 5.25, the overtopping results follow the experimental results for the
waveFlow solver. The over-prediction trend for waveFoam is consistent in all the
studies carried out in this thesis work2.

2XBeach results were not a part of the work done in this thesis
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Figure 5.25: Cumulative overtopped volume time series comparison of the two solvers under
consideration

Considering the previous argument of constant positive overtopping in wave-
Foam, a threshold of Q(t) = 10−6 m3/s was set to understand the isolate the
performance of waveFoam. The clipped overtopping signal can be seen in Fig-
ure 5.26. Despite the filtering of small overtopping events, the solvers seems to be
over-predicting overtopping volume for almost every individual overtopping event.
This overprediction can be clearly seen in Figure 5.27. This provides substantial
proof regarding the overtopping behavior for the two solvers.

Figure 5.26: Overtopping discharge filtered time series.
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Figure 5.27: Cumulative overtopped volume for the filtered version of the overtopping dis-
charge.

Overtopping results without the overpredicting waveFoam solver can be seen in
Figure 5.28. OpenFOAM solvers seem to be predicting the small as well as large over-
topping volumes quite reasonably. However, since the grid effects are not quantified
it is expected that the results will improve upon further refinement, but this was not
possible in this investigation. This extensive comparison confirms the quantitative
and qualitative differences between the two interface capture methods used in this
study. Within the scope of the grid and computing environment discussed in this
investigation, waveFlow solvers seems to produce the closest results for surface
elevation and overtopping simultaneously, while waveFoam seems to overpredict
the overtopping volumes by a large factor.

Figure 5.28: Cumulative overtopped volume comparison against different databases used in
this study, without the waveFoam solver.





6 C O N C L U S I O N S A N D
R E C O M M E N DAT I O N S

outline
This chapter provides initially the conclusions for the research questions investi-
gated during this thesis work. It is followed by some general recommendations
about using the new solver along with some practical usage recommendation.

conclusions

What is the practical feasibility of advanced CFD based models in
comparison to simpler models like phase averaged and phase-resolving
models, in complex surf zones and swash zones?, and which physical

processes in the surf zone affect wave overtopping on the slopes of coastal
structures like dikes?

6.1 practicality of computational fluid dynamics
The practicality of the CFD models as used in this particular investigation can be
looked at in two different perspectives as listed below and will be discussed in the
following sub-sections.

• Predicting mean properties for long time durations

• Predicting detailed hydrodynamics for short time durations

6.1.1 Long time durations

The very first approach would be to obtain mean properties viz., mean η distribu-
tion across the shore, mean overtopping volume, run-up, and possibly other hydro-
dynamics in the surf zone using an advanced model. The present coarse grid so-
lutions with the new development ( waveFlow) show promising results, especially
for surface elevation and overtopping measurements. Despite the coarse resolution,
the numerical results using the new solver seem to predict better overtopping re-
sults in comparison to its predecessor solver. However, the feasibility of using such
a detailed model is critically limited to a few key parameters as listed below.

• Optimizing computational resources for a given HPC system.

• Necessity for large time durations (to replicate complete sea state conditions).

The first point in the list above has a fundamental limitation on how much speed-
up can be achieved for a given piece of code on a specified computing environment.
In this particular case, two computing clusters were used to test the feasibility of
the C++ code used. Most of the computational effort was spent in replicating the
rather long time series than solving intricate physics, say Large Eddy Simulation

79



6.1 practicality of computational fluid dynamics 80

or Direct Numerical simulations. Given that a RANS turbulence closure was used,
the grid resolution requirement was relatively low. As a result, distributing the
computational geometry over ’n’ number of computing processors only speed-up
the simulation when n ∼ 15− 16. Any additional computing processors did not
add computational value. Consequently, the major challenge in this study was
replicating the long time domain. As a result, optimizing the computation itself
was not possible. However, as discussed in section 2.4.2, shortening the length
of the time domain and analyzing the key hydrodynamic properties for design
seems to be valid approach for wave overtopping applications. Although, this has
theoretical limitations since it does not replicate all the crucial frequencies in the sea
state spectrum. This also details the second point in the list above.

To recapitulate, the current feasibility of CFD models for long term wave applica-
tions seems to be in the primitive stages for long duration wave model applications.
This is despite using a coupled modeling approach like the one used in this case.
Given that no speed-up tests were done to understand the scalability of the com-
puting cluster at TU Delft, one of the recommendations would be to investigate the
behavior of the locally compiled code on the computing cluster. As seen in Fig-
ure 6.1, a similar scalability test will greatly help in estimating the computational
optimum for the given computing environment.

Figure 6.1: Scalability on the ’Magnus’ computing cluster at PAWSEY, Perth. Adapted from
[Tong, 2014].

Although the numerical results using OpenFOAM demand larger computational
time in comparison to the simpler models, the overtopping results using XBeach
fail to resolve small overtopping events but preserve the general overtopping trend.
Consequently, using a CFD model capable of simulating wave breaking can prove
effective in the end in order to predict small and large overtopping events which
otherwise cannot be captured using a simpler model.

6.1.2 Detailed Hydrodynamics

As already detailed in Jacobsen et al. [2012], Larsen and Fuhrman [2018], and Brown
et al. [2016] to list a few, the use of OpenFOAM yields sufficiently detailed results in
terms of surface elevation, turbulence levels, velocity profiles, and possibly other
hydrodynamics not mentioned in this list. Instead of using the CFD model as a
preliminary design tool to obtain mean hydrodynamic quantities, looking at the
most critical design events to gain better insights into the system behavior seems to
be an effective approach to utilize such a numerical model.

Given that the numerical wave tank is capable of providing detailed predictions
for a large number of hydrodynamic parameters, the feasibility of such numerical
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model lies in detailed investigation of a limited time domain. However, having said
this the computational time required for a coarse grid simulation to run about 300

s of real time, an estimated 6 days were required. In comparison to a wide variety
of other simpler models (SWAN, SWASH, XBeach etc.) the computational time is
exponentially large. However, given the amount of details that can be obtained the
feasibility of such a CFD model is based on the required hydrodynamic parameters.
To conclude, using CFD models for long time durations boils down to a balance
between user requirement and computational feasibility. For detailed results, a
CFD model can provide relatively sufficient resolution in the hydrodynamics, while
other simpler models can be used to predict the mean hydrodynamics. This answers
the first part of the research question under investigation.

6.2 wave overtopping using waveflow
As detailed in the numerical model results discussed in Section 5.2, wave breaking
was observed to be a key criterion in the resulting wave overtopping. Given that
most of the waves break quite some distance away from the toe of the dike, the
roller propagating as a result of the wave breaking is seen to have reduced onshore
momentum due to successive splash up cycles. The spectral analysis of the wave
signal at the toe of the dike (See Figure 6.2) shows that a substantial amount of
energy exists in the higher frequency side after the waves have broken while most
of the wave energy has been transfered to lower frequency post breaking. Open-
FOAM fails to capture the low frequency peak but shows the energy on the higher
side of the spectrum. OceanWave3D on the other hand is able to capture the peak
frequency but fails to capture the high frequency tail of the spectrum. This shows
the stark differences between the two model types.

Figure 6.2: Variance density spectrum at the toe of the dike (x ∼ 45.79 m)

Note: No frequency analysis done for the low frequency component contribut-
ing to overtopping.

The new development within the OpenFOAM framework seems to be providing
a relatively realistic estimate in comparison to its predecessor solver. However, the
results correspond to a coarse grid simulation thus limiting the reliability of the
results as presented in their present form. Despite the coarse grid resolution, the
wave overtopping results using the new solver are relatively in better agreement
with the experimental results, while the previous solvers seems to be grossly over-
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predicting the overtopping volumes for the same grid size. Further investigations
using an intermediate grid size reveal that OpenFOAM consistently over-predicts the
overtopping volumes by a factor of 3-5 in comparison to the experimental results.
The new solver seems to provide a reasonable resolution for wave overtopping in
comparison to the experiment. It is expected that further refinement and isolating
the effect of grid on the results can improve the overtopping predictions. Thus it
can be safely concluded as evidenced in the preceding text that new development
within the OpenFOAM framework provides improved and relatively more accurate
overtopping results in comparison to the previous solvers.

Sub-Questions

• What hydrodynamics of the surf-zone can be obtained with an advanced model em-
ploying a RANS based approach?

The turbulence model stabilization coefficients as discussed in Larsen and
Fuhrman [2018] contribute to the variation in the wave breaking behavior.
Using the current λ2 value results in a better agreement for the plunging
breaker case where larger TKE is expected due to the violent plunging jet
generated. As outlined by Larsen and Fuhrman [2018] and Brown et al. [2016],
getting bounded and accurate TKE and velocity structure within the surf zone
seems to be still an open problem. However, using the developments made
by Larsen and Fuhrman [2018] seem to yield sufficiently bounded TKE values
unlike the previous turbulence closures which are polluted with erroneously
large TKE value in the pre-breaking region. Despite the over-prediction of
TKE deep within the surf zone, the mean wave height distribution was well
captured by the numerical model for both the spilling and plunging breaker.
The velocity and TKE distribution barring few over-predictions also seem to
provide a reasonable estimate in comparison to the experimental results.

Significant improvements were obtained in the plunging breaker case, these
improvements can be attributed to the changed stabilization coefficients. Al-
though a new interface capture method was used, the differences observed in
the surface elevation plots especially for the plunging case can be attributed to
the changed λ2 parameter in the turbulence model. This allowed for larger tur-
bulence levels to be developed within the fluid domain where a potential flow
region exists. Substantial evidence that no significant changes were observed
between the two solvers for the same turbulence model can be seen in Figure
6.3. The figure presents the same comparison as seen in Figure 5.2 but in
this case for waveFoam solver. All the other settings for this simulation were
identical to that used for waveFlow solver. This clearly shows that there is no
substantial difference between the results obtained by new solver. Resolving
wave breaking results in better surface elevation and wave setup predictions
using the stabilized RANS closure. However, the results obtained are quite
sensitive to the stabilization parameters used to simulate turbulence. This
was already shown in Larsen and Fuhrman [2018] and has been replicated in
this study with minor improvements for the plunging breaker case.
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Figure 6.3: Surface elevation comparison for waveFoam solver with identical turbulence
model settings as used for waveFlow solver.

• How is the turbulent kinetic energy distributed for spilling and plunging wave breaker
using a RANS based approach?

The TKE in the numerical model is over-predicted as one moves deeper within
the surf-zone. Closer to the wave breaking point, the TKE profiles seem to
follow the experimental findings adequately. In both the spilling and the
plunging case, the TKE is grossly over-predicted for the two most onshore
wave gauge’s as seen in Figure 6.4.

Figure 6.4: Turbulent Kinetic Energy profile comparison for plunging breaker case.

The details have been discussed in Section 5.1.2.

• What additional improvement can be observed in the prediction of wave overtopping
over coastal dikes using a RANS based approach in comparison to simpler models?

Significant improvements can be seen in the newly integrated waveFlow
solver in comparison to the previous solver. The new solver seems to be
predicting more realistic overtopping results in comparison to the previous
solver. These results are more in line with the experimental results as seen in
Figure 5.23. Despite the coarse mesh, the results for overtopping volume are
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similar to the overtopping results predicted by using XBeach (See Figure 5.28).
The coarse mesh consists of about 7 grid points for the smallest wave height
incident in the domain. Using a finer grid with about 17 grid points for the
smallest wave height incident in the domain results is satisfactory overtopping
predictions using the waveFlow solver. It is expected that the results using a
finer mesh will provide conclusive proof after estimating the effect of grid on
the overtopping results. Thus demanding a sensitivity analysis for the case,
due to time constraint this was not feasible in this investigation.

A practical outlook on the conservative prediction of waveFlow could result
in under-designed coastal defenses. As a result, carrying out a sensitivity
analysis for the effect of grid on the results is recommended. This will provide
an informed conclusion about the performance of the numerical model.

• What physical processes contribute to wave overtopping and how well are they repli-
cated in the numerical model?

Wave breaking seems to be one of the prominent processes affecting wave
run-up and overtopping. As discussed in the previous chapter, wave breaking
results in a propagating bore and the strength of this bore is characterized
by the type of wave breaking. In general, plunging breakers create splash up
cycles resulting in a stronger bore and hence larger overtopping events for
the same geometry. This splash up cycle results in a phase lag between the
wave induced setup and wave breaking location which was also observed and
investigated in Jacobsen et al. [2014]. Large momentum retention in the post
wave breaking region results in a higher run-up since the roller can propagate
further into the surf-zone.

The numerical model sufficiently resolves wave breaking and the associated
characteristics using a simple RANS closure. The wave overtopping resolution
for large and small overtopping events is satisfactorily captured by waveFlow.
This is in contrast to what was observed for the XBeach results, which failed to
capture the small overtopping events. This overtopping behavior can be seen
in Figure 6.5. In conclusion the numerical model using waveFlow seems to
provide accurate representation of the surface elevation, wave breaking behav-
ior, and wave overtopping for the investigations carried out in this particular
study.

Figure 6.5: Overtopping signal comparison of small overtopping events as observed by
XBeach and waveFlow solver.
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recommendations
This section details some practical usage recommendations as experienced during
this investigation.

6.2.1 Ting and Kirby [1994] Validation Test

• The results obtained in this test case were found to be sensitive to the grid
aspect ratio, so much so that a mean aspect ratio of about 1.3 in the domain
results in premature wave breaking. This was already mentioned in Jacobsen
et al. [2012] and has been reaffirmed in the current investigation. The results
using an aspect ratio of 1.3 can be seen in Figure ??. In order to correctly
capture wave breaking location and height, an aspect ratio of 1 should be
maintained in the numerical domain.

Figure 6.6: Premature breaking for both the solvers using poor quality mesh.

• It was observed that the wave breaking behavior is sensitive to the choice
of stabilization parameters used in the RANS closure developed by Larsen
and Fuhrman [2018]. Consequently, understanding the effect of the choice
of various λ parameters can result in different wave breaking behavior. This
was already outlined and stressed in Larsen and Fuhrman [2018]. In addition,
the current investigation showed substantial improvement in the plunging
breaker behavior by using a different λ parameter combination.

• The sampling rate for TKE and undertow measurement for the spilling case
should be kept to a high number since the wave period is small. A small
sampling frequency results in limited data for a given wave period and thus
no sensible averaging can be obtained. A small sampling frequency results in
an over-predicted and potentially biased profile as seen in Figure 6.7.
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Figure 6.7: Incorrect velocity profile using small sampling frequency ( f ∼ 10Hz) for sam-
pling the data.

6.2.2 Flanders Experimental Test

• Optimizing the computational time can provide significant speedup in the
simulations. As a result, it is advised to carry out a small scaling test for the
given setup. It was observed that in general for a mesh count of 0.1 Million
cells, a total of 16 processors results in the most optimal configuration. How-
ever, this number is also dependent on the hardware used on the computing
cluster.

• The write precision in OpenFOAM required for overtopping sampling should
be set to atleast 8 decimal places. A smaller write precision results in constant
time steps for certain parts of the simulations where the ∆t reaches extremely
small values. Since this ∆t is used in the computation of the overtopping
volume, it may erroneously result in an overtopping event with ∼ 0[m3] over-
topping volume since the ∆t ∼ 0[s]. As a result, increasing the write precision
within the controlDict can solve this issue.

• Overtopping measurements were found to be sensitive to the grid cell layers
close to the bottom wall. This was especially true for small overtopping events.
Using an extremely fine mesh near the bottom wall region resulted in flux
advection even when there was no overtopping observed in the experiments.
As a result, having a sufficiently fine mesh so as to stay within the y+ < 30
region and not critically affect the overtopping results had to undergo a trial
and error iteration.

• Additional investigations are proposed in order to investigate the differences
between waveFlow and waveFoam solvers. As discussed above, the overtop-
ping results improve significantly using a grid with ∼ 17 grid cells for the
smallest wave height incident in the domain. Isolating the effect of grid can
provide a better estimate for the effect grid size on the overtopping predic-
tions using both the solvers. Due to the limited scope of this investigation, it
was not possible to simulate the entire time series involving 1000 waves. As
a result, a detailed investigation employing 1000 waves is recommended to
further establish the efficacy of OpenFOAM for overtopping computations.
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A S O U R C E C O D E F O R W AV E F LO W

outline
This chapter presents the integration of waves2Foam and isoAdvection libraries within
OpenFOAM. The source code along with the compilation procedure will be dis-
cussed.

In order to sucessfully integrate the functionality of waveFoam and isoAdvection,
the following steps can be followed. It is noted that the current version of isoAdvec-
tion does not support the use of nAlphaSubCycles > 1 and nOuterCorrectors > 1. This
is due a bug in the code as pointed out by Johan Rønby1.

The following steps can be followed to sucessfully compile waveFoam with isoAd-
vection. Once the correct OpenFOAM and waves2Foam environments are initialized,
navigate to the location where the solvers are located. Generally, this should be at
/username-v1806/applications/utilities/waves2Foam/applications/solvers/solvers1806_PLUS.
Make a directory structure as described below.

waveFlow/
alphaControls.H
alphaCourantNo.H
alphaEqn.H
alphaEqnSubCycle.H
alphaSuSp.H
correctPhi.H
createAlphaFluxes.H
createFields.H
initCorrectPhi.H
pEqn.H
rhofs.H
setDeltaT.H
setRDeltaT.H
UEqn.H
Make

files
options

waveFlow.C

Using the listings below, the solver files can be created. After this issuing the
command wmake should be able to compile the new solver named waveFlow.

Listing A.1: alphaControls.H input file
1 const dictionary& alphaControls = mesh.solverDict(alpha1.name());
2

3 label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));

Listing A.2: alphaCourantNo.H input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright (C) 2011−2017 OpenFOAM Foundation
6 \\/ M anipulation |
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 License

1Personal Communication, Date: 27/April/2019
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9 This file is part of OpenFOAM.
10

11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License , or
14 ( at your option ) any later version .
15

16 OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details .
20

21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http :// www.gnu.org/licenses />.
23

24 Global
25 alphaCourantNo
26

27 Description
28 Calculates and outputs the mean and maximum Courant Numbers.
29

30 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
31

32 scalar maxAlphaCo
33 (
34 readScalar(runTime.controlDict().lookup("maxAlphaCo"))
35 );
36

37 scalar alphaCoNum = 0.0;
38 scalar meanAlphaCoNum = 0.0;
39

40 if (mesh.nInternalFaces())
41 {
42 scalarField sumPhi
43 (
44 mixture.nearInterface ()(). primitiveField()
45 ∗fvc::surfaceSum(mag(phi))().primitiveField()
46 );
47

48 alphaCoNum = 0.5∗gMax(sumPhi/mesh.V().field())∗runTime.deltaTValue();
49

50 meanAlphaCoNum =
51 0.5∗(gSum(sumPhi)/gSum(mesh.V().field()))∗runTime.deltaTValue();
52 }
53

54 Info<< "Interface Courant Number mean: " << meanAlphaCoNum
55 << " max: " << alphaCoNum << endl;
56

57 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing A.3: alphaEqn.H input file
1 // If there are more than one outer corrector , we use a mixture of old and
2 // new U and phi for propagating alpha1 in all but the first outer iteration
3 if (! pimple. firstIter ())
4 {
5 // We are recalculating alpha1 from the its old time value
6 alpha1 = alpha1.oldTime();
7 // Temporarily storing new U and phi values in prevIter storage
8 U.storePrevIter ();
9 phi.storePrevIter ();

10

11 // Overwriting new U and phi values with mixture of old and new values
12 phi = 0.5∗(phi + phi.oldTime());
13 U = 0.5∗(U + U.oldTime());
14 }
15

16 // Update alpha1
17 advector.advect ();
18

19 // Update rhoPhi
20 rhoPhi = advector.getRhoPhi(rho1, rho2);
21

22 alpha2 = 1.0 − alpha1;
23

24 if (! pimple. firstIter ())
25 {
26 // Restoring new U and phi values temporarily saved in prevIter () above
27 U = U.prevIter();
28 phi = phi.prevIter ();
29 }
30

31 Info<< "Phase−1 volume fraction = "
32 << alpha1.weightedAverage(mesh.Vsc()).value()
33 << " Min(" << alpha1.name() << ") = " << min(alpha1).value()
34 << " Max(" << alpha1.name() << ") − 1 = " << max(alpha1).value() − 1

35 << endl;

Listing A.4: alphaEqnSubCycle.H input file
1 if (nAlphaSubCycles > 1)
2 {
3 dimensionedScalar totalDeltaT = runTime.deltaT();
4 surfaceScalarField rhoPhiSum
5 (
6 IOobject
7 (
8 "rhoPhiSum",
9 runTime.timeName(),

10 mesh
11 ),
12 mesh,
13 dimensionedScalar(rhoPhi.dimensions(), Zero)
14 );
15

16 tmp<volScalarField> trSubDeltaT;
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17

18 for
19 (
20 subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
21 !(++alphaSubCycle).end();
22 )
23 {
24 #include "alphaEqn.H"
25 rhoPhiSum += (runTime.deltaT()/totalDeltaT)∗rhoPhi;
26 }
27

28 rhoPhi = rhoPhiSum;
29 }
30 else
31 {
32 #include "alphaEqn.H"
33 }
34

35 rho == alpha1∗rho1 + alpha2∗rho2;

Listing A.5: alphaSuSp.H input file
1 zeroField Su;
2 zeroField Sp;
3 zeroField divU;

Listing A.6: correctPhi.H input file
1 CorrectPhi
2 (
3 U,
4 phi,
5 p_rgh,
6 dimensionedScalar("rAUf", dimTime/rho.dimensions(), 1),
7 geometricZeroField(),
8 pimple
9 );

10

11 #include "continuityErrs.H"

Listing A.7: createAlphaFluxes.H input file
1 IOobject alphaPhi10Header
2 (
3 "alphaPhi10",
4 runTime.timeName(),
5 mesh,
6 IOobject :: READ_IF_PRESENT,
7 IOobject :: AUTO_WRITE
8 );
9

10 const bool alphaRestart =
11 alphaPhi10Header.typeHeaderOk<surfaceScalarField>(true);
12

13 // MULES flux from previous time−step
14 surfaceScalarField alphaPhi10

15 (
16 alphaPhi10Header,
17 phi∗fvc::interpolate (alpha1)
18 );
19

20 // MULES Correction
21 tmp<surfaceScalarField> talphaPhi1Corr0;

Listing A.8: createFields.H input file
1 #include "readGravitationalAcceleration.H"
2 #include "readWaveProperties.H"
3 #include "createExternalWaveForcing.H"
4

5 // #include "createRDeltaT.H"
6

7 Info<< "Reading field p_rgh\n" << endl;
8 volScalarField p_rgh
9 (

10 IOobject
11 (
12 "p_rgh",
13 runTime.timeName(),
14 mesh,
15 IOobject :: MUST_READ,
16 IOobject :: AUTO_WRITE
17 ),
18 mesh
19 );
20

21 Info<< "Reading field U\n" << endl;
22 volVectorField U
23 (
24 IOobject
25 (
26 "U",
27 runTime.timeName(),
28 mesh,
29 IOobject :: MUST_READ,
30 IOobject :: AUTO_WRITE
31 ),
32 mesh
33 );
34
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35 #include "createPhi.H"
36

37

38 Info<< "Reading transportProperties\n" << endl;
39 immiscibleIncompressibleTwoPhaseMixture mixture(U, phi);
40

41 volScalarField& alpha1(mixture.alpha1());
42 volScalarField& alpha2(mixture.alpha2());
43

44 const dimensionedScalar& rho1 = mixture.rho1();
45 const dimensionedScalar& rho2 = mixture.rho2();
46

47

48 // Need to store rho for ddt(rho , U)
49 volScalarField rho
50 (
51 IOobject
52 (
53 "rho",
54 runTime.timeName(),
55 mesh,
56 IOobject :: READ_IF_PRESENT
57 ),
58 alpha1∗rho1 + alpha2∗rho2

59 );
60 rho.oldTime();
61

62

63 // Mass flux
64 surfaceScalarField rhoPhi
65 (
66 IOobject
67 (
68 "rhoPhi",
69 runTime.timeName(),
70 mesh,
71 IOobject :: NO_READ,
72 IOobject :: NO_WRITE
73 ),
74 fvc :: interpolate (rho)∗phi
75 );
76

77

78 // Construct incompressible turbulence model
79 autoPtr<incompressible::turbulenceModel> turbulence
80 (
81 incompressible::turbulenceModel::New(U, phi, mixture)
82 );
83

84 #include "readhRef.H"
85 #include "gh.H"
86

87

88 // volScalarField gh("gh", g & (mesh.C() − referencePoint ));
89 // surfaceScalarField ghf("ghf", g & (mesh.Cf() − referencePoint ));
90

91

92

93 volScalarField p
94 (
95 IOobject
96 (
97 "p",
98 runTime.timeName(),
99 mesh,

100 IOobject :: NO_READ,
101 IOobject :: AUTO_WRITE
102 ),
103 p_rgh + rho∗gh
104 );
105

106 label pRefCell = 0;
107 scalar pRefValue = 0.0;
108 setRefCell
109 (
110 p,
111 p_rgh,
112 pimple.dict (),
113 pRefCell,
114 pRefValue
115 );
116

117 if (p_rgh.needReference())
118 {
119 p += dimensionedScalar
120 (
121 "p",
122 p.dimensions(),
123 pRefValue − getRefCellValue(p, pRefCell)
124 );
125 p_rgh = p − rho∗gh;
126 }
127

128 mesh.setFluxRequired(p_rgh.name());
129 mesh.setFluxRequired(alpha1.name());
130

131 // MULES compressed flux is registered in case scalarTransport FO needs it .
132 /∗ surfaceScalarField alphaPhiUn
133 (
134 IOobject
135 (
136 "alphaPhiUn",
137 runTime.timeName(),
138 mesh,
139 IOobject :: NO_READ,
140 IOobject :: NO_WRITE
141 ),
142 mesh,
143 dimensionedScalar("zero ", phi .dimensions (), 0.0)
144 );
145 ∗/
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146 #include "createMRF.H"
147

148

149 relaxationZone relaxing(mesh, U, alpha1);
150

151 isoAdvection advector(alpha1, phi, U);

Listing A.9: initCorrectPhi.H input file
1 tmp<volScalarField> rAU;
2

3 if (CorrectPhi)
4 {
5 rAU = new volScalarField
6 (
7 IOobject
8 (
9 "rAU",

10 runTime.timeName(),
11 mesh,
12 IOobject :: READ_IF_PRESENT,
13 IOobject :: AUTO_WRITE
14 ),
15 mesh,
16 dimensionedScalar("rAU", dimTime/dimDensity, 1)
17 );
18

19 #include "correctPhi .H"
20 }
21 else
22 {
23 CorrectPhi
24 (
25 U,
26 phi,
27 p_rgh,
28 dimensionedScalar("rAUf", dimTime/rho.dimensions(), 1),
29 geometricZeroField(),
30 pimple
31 );
32

33 #include "continuityErrs.H"
34 }

Listing A.10: pEqn.H input file
1 {
2 volScalarField rAU("rAU", 1.0/UEqn.A());
3 surfaceScalarField rAUf("rAUf", fvc:: interpolate (rAU));
4

5 volVectorField HbyA(constrainHbyA(rAU∗UEqn.H(), U, p_rgh));
6

7 surfaceScalarField phiHbyA
8 (
9 "phiHbyA",

10 fvc :: flux(HbyA)
11 + fvc :: interpolate (rho∗rAU)∗fvc::ddtCorr(U, phi)
12 );
13 MRF.makeRelative(phiHbyA);
14 adjustPhi(phiHbyA, U, p_rgh);
15

16 surfaceScalarField phig
17 (
18 (
19 mixture.surfaceTensionForce()
20 − ghf∗fvc::snGrad(rho)
21 )∗rAUf∗mesh.magSf()
22 );
23

24 phiHbyA += phig;
25

26 // Update the pressure BCs to ensure flux consistency
27 constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
28

29 while (pimple.correctNonOrthogonal())
30 {
31 fvScalarMatrix p_rghEqn
32 (
33 fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA)
34 );
35

36 p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
37

38 p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter ())));
39

40 if (pimple.finalNonOrthogonalIter())
41 {
42 phi = phiHbyA − p_rghEqn.flux();
43

44 p_rgh.relax ();
45

46 U = HbyA + rAU∗fvc::reconstruct((phig − p_rghEqn.flux())/rAUf);
47 U.correctBoundaryConditions();
48 fvOptions.correct(U);
49 }
50 }
51

52 #include "continuityErrs.H"
53

54 p == p_rgh + rho∗gh;
55

56 if (p_rgh.needReference())
57 {
58 p += dimensionedScalar
59 (
60 "p",
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61 p.dimensions(),
62 pRefValue − getRefCellValue(p, pRefCell)
63 );
64 p_rgh = p − rho∗gh;
65 }
66 }

Listing A.11: rhofs.H input file
1 const dimensionedScalar& rho1f(rho1);
2 const dimensionedScalar& rho2f(rho2);

Listing A.12: setDeltaT.H input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright (C) 2011−2017 OpenFOAM Foundation
6 \\/ M anipulation |
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 License
9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License , or
14 ( at your option ) any later version .
15

16 OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details .
20

21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http :// www.gnu.org/licenses />.
23

24 Global
25 setDeltaT
26

27 Description
28 Reset the timestep to maintain a constant maximum courant Number.
29 Reduction of time−step is immediate, but increase is damped to avoid
30 unstable oscillations .
31

32 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
33

34 if (adjustTimeStep)
35 {
36 scalar maxDeltaTFact =
37 min(maxCo/(CoNum + SMALL), maxAlphaCo/(alphaCoNum + SMALL));
38

39 scalar deltaTFact = min(min(maxDeltaTFact, 1.0 + 0.1∗maxDeltaTFact), 1.2);
40

41 runTime.setDeltaT
42 (
43 min
44 (
45 deltaTFact∗runTime.deltaTValue(),
46 maxDeltaT
47 )
48 );
49

50 Info<< "deltaT = " << runTime.deltaTValue() << endl;
51 }
52

53 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing A.13: UEqn.H input file
1 MRF.correctBoundaryVelocity(U);
2

3 fvVectorMatrix UEqn
4 (
5 fvm::ddt(rho, U) + fvm::div(rhoPhi, U)
6 + MRF.DDt(rho, U)
7 + turbulence−>divDevRhoReff(rho, U)
8 ==
9 fvOptions(rho, U)

10 );
11

12 UEqn.relax();
13

14 fvOptions.constrain(UEqn);
15

16 if (pimple.momentumPredictor())
17 {
18 solve
19 (
20 UEqn
21 ==
22 fvc :: reconstruct
23 (
24 (
25 mixture.surfaceTensionForce()
26 − ghf∗fvc::snGrad(rho)
27 − fvc ::snGrad(p_rgh)
28 ) ∗ mesh.magSf()
29 )
30 );
31

32 fvOptions.correct(U);
33 }
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Listing A.14: waveFlow.C input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright (C) 2011−2017 OpenFOAM Foundation
6 \\/ M anipulation |
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 License
9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License , or
14 ( at your option ) any later version .
15

16 OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details .
20

21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http :// www.gnu.org/licenses />.
23

24 Application
25 interFoam
26

27 Group
28 grpMultiphaseSolvers
29

30 Description
31 Solver for 2 incompressible , isothermal immiscible fluids using a VOF
32 (volume of fluid ) phase−fraction based interface capturing approach.
33

34 The momentum and other fluid properties are of the "mixture" and a single
35 momentum equation is solved .
36

37 Turbulence modelling is generic , i . e . laminar, RAS or LES may be selected .
38

39 For a two−fluid approach see twoPhaseEulerFoam.
40

41 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
42

43 #include "fvCFD.H"
44 // #include "CMULES.H"
45

46 // Include the isoAdvection header file
47 #include "isoAdvection.H"
48

49 // #include "EulerDdtScheme.H"
50 // #include "localEulerDdtScheme.H"
51 // #include "CrankNicolsonDdtScheme.H"
52 #include "subCycle.H"
53 #include "immiscibleIncompressibleTwoPhaseMixture.H"
54 #include "turbulentTransportModel.H"
55 #include "pimpleControl.H"
56 #include "fvOptions.H"
57 #include "CorrectPhi.H"
58 #include "fvcSmooth.H"
59

60 #include "relaxationZone.H"
61 #include "externalWaveForcing.H"
62

63 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
64

65 int main(int argc, char ∗argv[])
66 {
67

68 #include "setRootCase.H"
69 #include "createTime.H"
70 #include "createMesh.H"
71

72 #include "createControl.H"
73 #include "createTimeControls.H"
74 #include "initContinuityErrs.H"
75

76 #include "createFields .H"
77 // #include "createAlphaFluxes .H"
78 #include "createFvOptions.H"
79 #include "correctPhi .H"
80 #include "postProcess.H"
81

82 turbulence−>validate();
83

84 #include "readTimeControls.H"
85 #include "CourantNo.H"
86 #include " setInitialDeltaT .H"
87

88

89 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
90

91 Info<< "\nStarting time loop\n" << endl;
92

93 while (runTime.run())
94 {
95 #include "readTimeControls.H"
96

97 #include "CourantNo.H"
98 #include "alphaCourantNo.H"
99 #include "setDeltaT.H"

100

101 runTime++;
102

103 Info<< "Time = " << runTime.timeName() << nl << endl;
104

105 externalWave−>step();
106

107 // −−− Pressure−velocity PIMPLE corrector loop
108 while (pimple.loop())
109 {
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110 #include "alphaControls.H"
111 #include "alphaEqnSubCycle.H"
112

113 relaxing. correct ();
114

115 mixture.correct ();
116

117 if (pimple.frozenFlow())
118 {
119 continue;
120 }
121

122 #include "UEqn.H"
123

124 // −−− Pressure corrector loop
125 while (pimple.correct())
126 {
127 #include "pEqn.H"
128 }
129

130 if (pimple.turbCorr())
131 {
132 turbulence−>correct();
133 }
134 }
135

136 runTime.write();
137

138 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
139 << " ClockTime = " << runTime.elapsedClockTime() << " s"
140 << nl << endl;
141 }
142

143 // Close down the external wave forcing in a nice manner
144 externalWave−>close();
145

146 Info<< "End\n" << endl;
147

148 return 0;
149 }
150

151

152 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing A.15: files input information
1 waveFlow.C
2

3 EXE = $(WAVES_USER_APPBIN)/waveFlow

Listing A.16: options input file
1 EXE_INC = \
2 −I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
3 −I$(LIB_SRC)/transportModels \
4 −I$(LIB_SRC)/transportModels/incompressible/lnInclude \
5 −I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
6 −I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
7 −I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
8 −I$(LIB_SRC)/transportModels/immiscibleIncompressibleTwoPhaseMixture/lnInclude \
9 −I$(LIB_SRC)/finiteVolume/lnInclude \

10 −I$(LIB_SRC)/meshTools/lnInclude \
11 −I$(LIB_SRC)/sampling/lnInclude \
12 −DOFVERSION=1712 \
13 −DEXTBRANCH=0 \
14 −DOFPLUSBRANCH=1 \
15 −DXVERSION=$(WAVES_XVERSION) \
16 −I$(WAVES_SRC)/waves2Foam/lnInclude \
17 −I$(WAVES_SRC)/waves2FoamSampling/lnInclude \
18 −I$(WAVES_SRC)/waves2FoamOvertopping/lnInclude \
19 −I$(WAVES_GSL_INCLUDE)
20

21 EXE_LIBS = \
22 −limmiscibleIncompressibleTwoPhaseMixture \
23 −lturbulenceModels \
24 −lincompressibleTurbulenceModels \
25 −lfiniteVolume \
26 −lfvOptions \
27 −lmeshTools \
28 −lsampling \
29 −L$(WAVES_LIBBIN) \
30 −lwaves2Foam \
31 −lwaves2FoamSampling \
32 −lwaves2FoamOvertopping \
33 −L$(WAVES_GSL_LIB) \
34 −lgsl \
35 −lgslcblas



B C A L I B R AT I O N T E S T R E S U LT S

outline
This chapter presents the results of the calibration test which is based upon a simple
sloping beach with a vertical wall in the end. This conceptual model does not
reply on any experimental investigation, however, some qualitative results have
been presented in this section. The additional results have been included in this
part of the report for sake of completeness.

(a) Wave Gauge No: 5 (b) Wave Gauge No: 10

(c) Wave Gauge No: 15 (d) Wave Gauge No: 20

Figure B.1: Surface elevation time series comparison within the relaxation zone. Approxi-
mately 20 wave gauge’s are present within the relaxation zone (See Figure 3.3)
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(a) Wave Gauge No: 45 (b) Wave Gauge No: 65

(c) Wave Gauge No: 82 (d) Wave Gauge No: 83

Figure B.2: Surface elevation time series comparison outside the relaxation zone. Wave
gauge 82 and 83 are close to the vertical structure as seen in Figure 3.2

Figure B.3: Overtopping time series for waveFlow and waveFoam.



C T I N G A N D K I R B Y S E T U P

outline
This chapter details the numerical model setup used for the Ting and Kirby [1994]
numerical simulations. The numerical model setup are described in the initial sec-
tions of this chapter, followed by some additional results and discussions.

The case is organised as seen in the directory structure below. The conventional
OpenFOAM case structure has been utilized in the setup. All the files concerning the
model setup can be found in the listings below.

TingAndKirbyCase/
0/

alpha.water
nut
omega
p_rgh
U

constant/
environmentalProperties
postProcessingProperties
probeDefinitions
transportProperties
turbulenceProperties
waveProperties.input

system/
blockMeshDict
controlDict
fvSchemes
fvSolution
probeData

Listing C.1: alpha.water input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : v1806 |
5 | \\ / A nd | Web: www.OpenFOAM.com |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class volScalarField ;
13 location "0" ;
14 object alpha.water;
15 }
16 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
17

18 dimensions [0 0 0 0 0 0 0];
19

20

21 internalField uniform 0;
22

23 boundaryField
24 {
25 inlet
26 {
27 type waveAlpha;
28 refValue uniform 0

29 refGradient uniform 0;
30 valueFraction uniform 1;
31 value uniform 0;
32 }
33 outlet
34 {

103
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35 type zeroGradient;
36 }
37 atmosphere
38 {
39 type inletOutlet ;
40 inletValue uniform 0;
41 value uniform 0;
42 }
43 bottom
44 {
45 type zeroGradient;
46 }
47 frontAndBack
48 {
49 type empty;
50 }
51 }
52

53

54 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.2: nut input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration | Website: https :// openfoam.org
5 \\ / A nd | Version : 6
6 \\/ M anipulation |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class volScalarField ;
13 location "0" ;
14 object nut;
15 }
16 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
17

18 dimensions [0 2 −1 0 0 0 0];
19

20 internalField uniform 0;
21

22 boundaryField
23 {
24 inlet
25 {
26 type zeroGradient;
27 }
28

29 outlet
30 {
31 type nutkRoughWallFunction;
32 Ks uniform 0; // Sand grain roughness height (0 for smooth walls )
33 Cs uniform 0.5; // Roughness constant (~0.5 to 1.0)
34 value $internalField ;
35 }
36

37 bottom
38 {
39 type nutkRoughWallFunction;
40 // Nikurdse roughness for plywood as specified in Larsen 2018
41 Ks uniform 1e−04; //Sand grain roughness height (0 for smooth walls )
42 Cs uniform 0.5; // Roughness constant (~0.5 to 1.0)
43 value $internalField ;
44

45 }
46

47 atmosphere
48 {
49 type calculated;
50 value uniform 0;
51 }
52

53 frontBack
54 {
55 type empty;
56 }
57 }
58

59

60 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.3: omega input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration | Website: https :// openfoam.org
5 \\ / A nd | Version : 6
6 \\/ M anipulation |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class volScalarField ;
13 location "0" ;
14 object omega;
15 }
16 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
17

18 dimensions [0 0 −1 0 0 0 0];
19

20 internalField uniform 1.977;
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21

22 boundaryField
23 {
24 bottom
25 {
26 type omegaWallFunction;
27 // Only an initial guess to speed up the solution
28 // Can use different approaches to save computational time
29 value $internalField ;
30 }
31

32 atmosphere
33 {
34 type inletOutlet ;
35 inletValue $internalField ;
36 value $internalField ;
37 }
38

39 frontBack
40 {
41 type empty;
42 }
43

44 inlet
45 {
46 type zeroGradient;
47 }
48

49 outlet
50 {
51 $bottom
52 }
53 }
54

55

56 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.4: p_rgh input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : v1806 |
5 | \\ / A nd | Web: www.OpenFOAM.com |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class volScalarField ;
13 location "0" ;
14 object p_rgh;
15 }
16 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
17

18 dimensions [1 −1 −2 0 0 0 0];
19

20 internalField uniform 0;
21

22 boundaryField
23 {
24 inlet
25 {
26 type fixedFluxPressure;
27 gradient uniform 0;
28 value uniform 0;
29 }
30 outlet
31 {
32 type fixedFluxPressure;
33 gradient uniform 0;
34 value uniform 0;
35 }
36 atmosphere
37 {
38 type totalPressure ;
39 rho rho;
40 psi none;
41 gamma 1;
42 p0 uniform 0;
43 value uniform 0;
44 }
45 bottom
46 {
47 type fixedFluxPressure;
48 gradient uniform 0;
49 value uniform 0;
50 }
51 frontAndBack
52 {
53 type empty;
54 }
55 }
56

57

58 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.5: U input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : v1806 |
5 | \\ / A nd | Web: www.OpenFOAM.com |
6 | \\/ M anipulation | |
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7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class volVectorField;
13 location "0" ;
14 object U;
15 }
16 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
17

18 dimensions [0 1 −1 0 0 0 0];
19

20

21 internalField uniform (0 0 0);
22

23 boundaryField
24 {
25 inlet
26 {
27 type waveVelocity;
28 refValue uniform (0 0 0);
29 refGradient uniform (0 0 0);
30 valueFraction uniform 1;
31 value uniform (0 0 0);
32 }
33

34 outlet
35 {
36 type noSlip;
37 }
38

39 atmosphere
40 {
41 type pressureInletOutletVelocity;
42 value uniform (0 0 0);
43 }
44

45 bottom
46 {
47 type noSlip;
48 }
49

50 frontAndBack
51 {
52 type empty;
53 }
54 }
55

56

57 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.6: environmentalProperties input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : 1.5 |
5 | \\ / A nd | Web: http :// www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class dictionary;
13 object environmentalProperties;
14 }
15 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
16

17 g g [0 1 −2 0 0 0 0] (0 0 −9.81);
18

19 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.7: postProcessingProperties input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : 1.5 |
5 | \\ / A nd | Web: http :// www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class dictionary;
13 object postProcessingProperties;
14 }
15 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
16

17 deleteParentOutputDirectory false;
18

19 regularSpectrum
20 {
21 callName surfaceElevation;
22

23 removeDuplicate true;
24 inputDir surfaceElevationAnyName;
25

26 deltaT 0.0005;
27

28 tMin 0;
29 tMax 253;
30
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31 actionList ( interpolateSurfaceElevation );
32

33 nFreq 10;
34 period 2.0;
35 allDataSets true;
36 }
37

38 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.8: transportProperties input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : v1806 |
5 | \\ / A nd | Web: www.OpenFOAM.com |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class dictionary;
13 location "constant";
14 object transportProperties;
15 }
16 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
17

18 phases (water air );
19

20 water
21 {
22 transportModel Newtonian;
23 nu 1e−06;
24 rho rho [1 −3 0 0 0] 1000;
25 }
26

27 air
28 {
29 transportModel Newtonian;
30 nu 1.48e−05;
31 rho rho [1 −3 0 0 0] 1;
32 }
33

34 sigma 0.07; // Can be set to 0
35

36 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.9: turbulenceProperties input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : v1806 |
5 | \\ / A nd | Web: www.OpenFOAM.com |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class dictionary;
13 location "constant";
14 object turbulenceProperties;
15 }
16 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
17

18 simulationType RAS;
19

20 RAS
21 {
22 RASModel kOmegaStab;
23

24 turbulence on;
25

26 printCoeffs on;
27

28 kOmegaStabCoeffs
29 {
30 // It was shown that lambda1 = 0; does not results in a spilling wave
31 lambda1 0.875; // Based on Larsen 2018
32

33 // Stabilisation factor
34 lambda2 0.05; // Based on Larsen 2018
35 }
36 }
37

38

39 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.10: waveProperties.input input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : v1806 |
5 | \\ / A nd | Web: www.OpenFOAM.com |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
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12 class dictionary;
13 object waveProperties;
14 }
15 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
16

17 seaLevel 0;
18

19 relaxationNames ( inlet );
20

21 initializationName inlet ;
22

23 inletCoeffs
24 {
25 // Type of wave
26 waveType streamFunction;
27

28 // Height of the wave at the boundary
29 height 0.125; // [m]
30

31 // Depth at which he imposed wave enters the computational domain
32 depth 0.4; // [m]
33

34 // Number of components
35 N 30; // [−]
36

37 // Number of Iterations
38 Niter 40; // [−]
39

40 // Phase of the wave
41 phi 0; // [ radians ]
42

43 // Direction of the wave
44 direction (1 0 0); // (x y z) propagation normal vector
45

46 // Decision for information specification
47 specifyPeriod true;
48

49 // Period of the incoming wave
50 period 2.0; // [s]
51

52 // Specify Euler boolean
53 specifyEuler false ;
54

55 // Stokes velocity at the inlet
56 stokesVelocity 0; // [m/s]
57

58 // Specification of Tsoft
59 Tsoft 2; // Equal to the wave period
60

61

62 relaxationZone
63 {
64 relaxationScheme Spatial ;
65 relaxationShape Rectangular;
66 beachType Empty;
67 relaxType INLET;
68 startX ( −8 0 0 );
69 endX ( −4 0.1 0 );
70 orientation ( 1 0 0 );
71 }
72 }
73

74

75

76

77 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.11: blockMeshDict input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : v1806 |
5 | \\ / A nd | Web: www.OpenFOAM.com |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class dictionary;
13 object blockMeshDict;
14 }
15 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
16

17 // This line will allow scaling of the dimensions. For example, 0.01 will convert all the units to cm scale
18 scale 1;
19

20 // Resolution in block 1
21

22 resX1 800;
23 resZ1 80;
24

25 // Resolution in block 1
26 resX2 1550;
27 resZ2 80;
28

29 vertices
30 (
31 // Block 1
32 (−8 0 −0.4) // Point 0
33 (0 0 −0.4) // Point 1
34 (0 0 0.4) // Point 2
35 (−8 0 0.4) // Point 3
36

37 (−8 0.1 −0.4) // Point 4
38 (0 0.1 −0.4) // Point 5
39 (0 0.1 0.4) // Point 6
40 (−8 0.1 0.4) // Point 7
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41

42 // Block 2
43 (15.95 0 0.0557) // Point 8
44 (15.95 0 0.8557) // Point 9
45

46 (15.95 0.1 0.0557) // Point 10
47 (15.95 0.1 0.8557) // Point 11
48

49 );
50

51 blocks
52 (
53 hex (0 1 5 4 3 2 6 7) ($resX1 1 $resZ1) simpleGrading (1 1 14)
54

55 hex (1 8 10 5 2 9 11 6) ($resX2 1 $resZ2) simpleGrading (2 1 14)
56 );
57

58 edges
59 (
60

61

62 );
63

64 boundary
65 (
66 inlet
67 {
68 type patch;
69 faces
70 (
71 (0 4 7 3)
72 );
73 }
74

75 outlet
76 {
77 type wall;
78 faces
79 (
80 (8 10 11 9)
81 );
82 }
83

84 atmosphere
85 {
86 type patch;
87 faces
88 (
89 (2 9 11 6)
90 (3 2 6 7)
91 );
92 }
93

94 bottom
95 {
96 type wall;
97 faces
98 (
99 (0 1 5 4)

100 (1 8 10 5)
101 );
102 }
103

104 frontAndBack
105 {
106 type empty;
107 faces
108 (
109 (0 3 2 1)
110 (4 7 6 5)
111 (1 2 9 8)
112 (5 6 11 10)
113 );
114 }
115

116 );
117

118 mergePatchPairs
119 (
120 );
121

122 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.12: controlDict input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : 1.5 |
5 | \\ / A nd | Web: http :// www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class dictionary;
13 object controlDict ;
14 }
15 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
16

17 application interFoam;
18

19 startFrom latestTime;
20

21 startTime 0;
22

23 stopAt endTime;
24
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25 endTime 330;
26

27 deltaT 0.0001;
28

29 writeControl adjustableRunTime;
30

31 writeInterval 0.5;
32

33 purgeWrite 0;
34

35 writeFormat ascii ;
36

37 writePrecision 6;
38

39 timeFormat general;
40

41 timePrecision 6;
42

43 runTimeModifiable yes;
44

45 adjustTimeStep yes;
46

47 maxCo 0.05;
48

49 maxAlphaCo 0.05;
50

51 maxDeltaT 1;
52

53

54 // Include modified Turbulence Model Library
55

56 libs
57 (
58 "libstabRASModels.so"
59 );
60

61

62 // Include functions for runtime postProcessing
63

64 functions
65 {
66 // Function Definition Files
67

68 // This file is generated using the command waveGaugeNProbes
69 // Surface Elevation Include File
70 #includeIfPresent " ../waveGaugesNProbes/surfaceElevationAnyName_controlDict"
71

72 // Probe data include file
73 #include "probeData"
74

75 }
76

77 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.13: fvSchemes input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : 1.5 |
5 | \\ / A nd | Web: http :// www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class dictionary;
13 object fvSchemes;
14 }
15 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
16

17 ddtSchemes
18 {
19 default Euler;
20 }
21

22 gradSchemes
23 {
24 default Gauss linear;
25 grad(U) Gauss linear;
26 grad(alpha1) Gauss linear;
27 }
28

29 divSchemes
30 {
31 default none;
32

33 div(rhoPhi,U) Gauss linearUpwind Gauss linear phi;
34 div((( rho∗nuEff)∗dev2(T(grad(U))))) Gauss linear;
35 div(phi,alpha) Gauss vanLeer;
36 div(phirb,alpha) Gauss interfaceCompression;
37

38 // Turbulence Terms
39 div(rhoPhi,k) Gauss Minmod;
40 div(rhoPhi,omega) Gauss Minmod;
41

42 div(phi,k) Gauss Minmod;
43 div(phi,omega) Gauss Minmod;
44 div((muEff∗dev(T(grad(U))))) Gauss linear;
45 div((( rho∗nuEff)∗dev2(T(grad(U))))) Gauss linear;
46

47 }
48

49 laplacianSchemes
50 {
51 default Gauss linear corrected;
52 }
53
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54 interpolationSchemes
55 {
56 default linear ;
57 }
58

59 snGradSchemes
60 {
61 default corrected;
62 }
63

64 fluxRequired
65 {
66 default no;
67 p_rgh;
68 pcorr;
69 alpha.water;
70 }
71

72 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.14: fvSolution input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : 1.5 |
5 | \\ / A nd | Web: http :// www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 version 2.0;
11 format ascii ;
12 class dictionary;
13 object fvSolution;
14 }
15 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
16

17 solvers
18 {
19 "alpha.water.∗"
20 {
21 isoFaceTol 1e−10;
22 surfCellTol 1e−6;
23 nAlphaBounds 3;
24 snapTol 1e−12;
25 clip true;
26

27 nAlphaSubCycles 1;
28 // cAlpha is not used by isoAdvector but must be specified because interfacePropertes object reads it during construction .
29 cAlpha 1;
30 }
31

32 pcorr
33 {
34 solver PCG;
35 tolerance 1e−10;
36 relTol 0.0;
37

38 preconditioner DIC;
39 }
40

41 pcorrFinal
42 {
43 solver PCG;
44 tolerance 1e−10;
45 relTol 0.0;
46

47 preconditioner DIC;
48 }
49

50 p_rgh
51 {
52 solver PCG;
53 tolerance 1e−7;
54 relTol 0;
55

56 preconditioner DIC;
57 }
58

59 p_rghFinal
60 {
61 solver PCG;
62 tolerance 1e−7;
63 relTol 0;
64

65 preconditioner DIC;
66 }
67

68 U
69 {
70 solver PBiCG;
71 preconditioner DILU;
72 tolerance 1e−07;
73 relTol 0;
74 }
75

76 UFinal
77 {
78 solver PBiCG;
79 preconditioner DILU;
80 tolerance 1e−09;
81 relTol 0;
82 }
83

84 k
85 {
86 solver PBiCG;
87 preconditioner DILU;
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88 tolerance 1e−07;
89 relTol 0;
90 }
91

92 kFinal
93 {
94 solver PBiCG;
95 preconditioner DILU;
96 tolerance 1e−09;
97 relTol 0;
98 }
99

100 omega
101 {
102 solver PBiCG;
103 preconditioner DILU;
104 tolerance 1e−08;
105 relTol 0;
106 }
107

108 omegaFinal
109 {
110 solver PBiCG;
111 preconditioner DILU;
112 tolerance 1e−08;
113 relTol 0;
114 }
115 }
116

117

118 PIMPLE
119 {
120 momentumPredictor yes;
121 nOuterCorrectors 1;
122 nCorrectors 4;
123 nNonOrthogonalCorrectors 1;
124 }
125

126 relaxationFactors
127 {
128 fields
129 {
130 }
131 equations
132 {
133 ".∗" 1;
134 }
135 }
136

137

138 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Listing C.15: probeData input file
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version : 1.5 |
5 | \\ / A nd | Web: http :// www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8

9

10

11 probeData
12 {
13 // Define the number of points
14 number 100;
15

16 // Sampling library import
17 functionObjectLibs ( "libsampling.so" );
18

19 // Type of probe ( set −> 1D sampling)
20 type sets ;
21

22 // Switch to enable
23 enabled true;
24

25 // writeControl flag
26 writeControl adjustableRunTime;
27

28 // Write interval period
29 writeInterval 0.01;
30

31 // Format of the data
32 setFormat raw;
33

34 // Interpolation scheme
35 interpolationScheme cellPoint;
36

37 // Fields to be sampled along the lines
38 fields
39 (
40 U
41 p
42 k
43 omega
44 alpha.water
45 );
46

47 sets
48 (
49 WG1 //Absolute location −1.265 m
50 {
51 type uniform;
52 axis z;
53 start (−1.265 0.05 −0.4);
54 end (−1.265 0.05 0.125);
55 nPoints $number;
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56 }
57

58 WG2 //Absolute location 5.945 m
59 {
60 type uniform;
61 axis z;
62 start (5.945 0.05 −0.23);
63 end (5.945 0.05 0.2);
64 nPoints $number;
65 }
66

67 WG3 //Absolute location 6.665 m
68 {
69 type uniform;
70 axis z;
71 start (6.665 0.05 −0.2095);
72 end (6.665 0.05 0.2);
73 nPoints $number;
74 }
75

76 WG4 //Absolute location 7.275 m
77 {
78 type uniform;
79 axis z;
80 start (7.275 0.05 −0.1921);
81 end (7.275 0.05 0.2);
82 nPoints $number;
83 }
84

85 WG5 //Absolute location 7.885 m
86 {
87 type uniform;
88 axis z;
89 start (7.885 0.05 −0.1747);
90 end (7.885 0.05 0.2);
91 nPoints $number;
92 }
93

94 WG6 //Absolute location 8.495 m
95 {
96 type uniform;
97 axis z;
98 start (8.495 0.05 −0.1573);
99 end (8.495 0.05 0.2);

100 nPoints $number;
101 }
102

103 WG7 //Absolute location 9.11 m
104 {
105 type uniform;
106 axis z;
107 start (9.11 0.05 −0.1397);
108 end (9.11 0.05 0.2);
109 nPoints $number;
110 }
111

112 WG8 //Absolute location 9.725 m
113 {
114 type uniform;
115 axis z;
116 start (9.725 0.05 −0.1221);
117 end (9.725 0.05 0.2);
118 nPoints $number;
119 }
120

121 );
122

123 }
124

125

126

127 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //



D P Y T H O N C O D E U S E D F O R A N A LY S I S

outline
This chapter includes the code listing for all the python codes used in the data
analysis routines.

Listing D.1: Python script used for min-max-mean analysis for the validation studies for Ting
and Kirby [1994]

1 #Importing the required libraries
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
5

6 #Signal processing library
7 from scipy.signal import argrelextrema
8

9 #Force python to use qt version of plotting
10 %matplotlib qt
11

12 #Loading the data required for the analysis
13 data = pd.read_csv(’waveFlow/0/surfaceElevation.dat’,sep=’\t’)
14

15 #Set the analysis bin window
16 n = 100 #Roughly equal to wavePeriod∗samplingRate∗0.5
17

18 #Set the location parameters by slicing the index before dropping of the data is done
19 location = data [:3]
20

21 # Initialize storage arrays for each of the variables
22 mean_eta = np.zeros(186)
23 maximum = np.zeros(186)
24 sdMax = np.zeros(186)
25 minimum = np.zeros(186)
26 sdMin = np.zeros(186)
27

28 #min−max analysis and look for the start and end of the database
29 for i in range(0,186):
30 #Carrying out the min−max analysis
31 data[’min’] = data. iloc [argrelextrema(data[’gauge_’+str(i )]. values, np.less_equal, order=n)[0]][ ’gauge_’+str(i )]
32 data[’max’] = data.iloc [argrelextrema(data[’gauge_’+str(i )]. values, np.greater_equal, order=n)[0]][ ’gauge_’+str(i )]
33

34 #Set start and end of the dataset
35 start = np.where(np.isnan(data[’min’]) == False)[0][0]
36 end = np.where(np.isnan(data[’min’]) == False)[0][−1]
37

38 #Drop the first and the last datapoints to avoid bias for incorrect start /end of database
39 myData = data[start:end]
40

41 #Carry out the calculations
42 mean_eta[i] = np.mean(myData[’gauge_’+str(i)])
43

44 #Compute the statistics
45 maximum[i] = np.mean(myData[’max’])
46 sdMax[i] = np.std(myData[’max’])
47 minimum[i] = np.mean(myData[’min’])
48 sdMin[i] = np.std(myData[’min’])
49

50 #Print the current wave gauge
51 print( ’Wave Gauge ’,i,’ done’,end=’\r’)
52

53 #Saving the text file
54 np.savetxt( ’pythonCodeData/waveFlow/maximum.dat’,maximum,delimiter=’\t’)
55 np.savetxt( ’pythonCodeData/waveFlow/minimum.dat’,minimum,delimiter=’\t’)
56 np.savetxt( ’pythonCodeData/waveFlow/minSD.dat’,sdMin,delimiter=’\t’)
57 np.savetxt( ’pythonCodeData/waveFlow/maxSD.dat’,sdMax,delimiter=’\t’)
58 np.savetxt( ’pythonCodeData/waveFlow/meanSurfaceElevation_waveFlow.txt’,mean_eta,delimiter=’\t’)

Listing D.2: Python script used to prepare the data for extraction and compiling of αw

1 #!/usr/bin/env python3
2 # −∗− coding: utf−8 −∗−
3 """
4 Created on Tue Jun 18 14:24:42 2019
5

6 @author: akshay
7 """
8

9 #Importing the required libraries
10 import numpy as np
11 import pandas as pd
12

13 #Read the ls . dat file which contains an ordered list of directory values
14 timeListing = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/waveFlow/ls.dat’,header=None,sep=’\t’,dtype=str)
15

114



python code used for analysis 115

16 for gaugeLoop in range(1,9):
17

18 #User input for which wave gauge is to be analyzed
19 waveGaugeNumber = gaugeLoop
20

21 #Read the data to store the y location of the selected wave gauge
22 location = np.loadtxt( ’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
23 /waveFlow/undertow/60.1/WG’+str(waveGaugeNumber)+’_alpha.water_k_omega_p.xy’,dtype=str,usecols=[0])
24

25 #Create a new empty dataframe which has y values as columns and add a time column
26 sampledData = pd.DataFrame(columns=[location])
27

28 #Adding the time column in the first location
29 sampledData.insert(0,’Time’,None)
30

31 #Looping through all the time directories
32 for i in timeListing. iloc [:,0]:
33

34 #Set the time value for the sampledData dataframe
35 sampledData.loc[i,’Time’] = i
36

37 #Create a dataLocation variable which changes as the time directory value changes
38 dataLocation = ’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/waveFlow/undertow/’+str(i)+’/’
39

40 #Read the data location file for a specified column only
41 myData = pd.read_csv(str(dataLocation)+’WG’+str(waveGaugeNumber)+’_alpha.water_k_omega_p.xy’,header=None,sep=’\t’,usecols=[0,1])
42

43 if (waveGaugeNumber == 6):
44 lengthOfArray = 99

45 else :
46 lengthOfArray = 100

47

48 #Looping through the 100 data values and storing the values for the given parameter
49 for j in range(lengthOfArray):
50 #Computing the velocity and saving it
51 sampledData.loc[i,location[ j ]] = myData.iloc[j ,1]
52 #Print the current i index
53 print("Time ",i , " done! for waveGauge:",waveGaugeNumber)
54

55 #Saving the data
56 sampledData.to_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
57 /pythonCodeData/waveFlow/undertow/undertow_alpha_waveGauge_’+str(waveGaugeNumber)+’.dat’,sep=’\t’)

Listing D.3: Python script used to prepare the data for extraction and compiling of k
1 #!/usr/bin/env python3
2 # −∗− coding: utf−8 −∗−
3 """
4 Created on Tue Jun 18 14:24:42 2019
5

6 @author: akshay
7 """
8

9 #Importing the required libraries
10 import numpy as np
11 import pandas as pd
12

13 #Read the ls . dat file which contains an ordered list of directory values
14 timeListing = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/
15 TINGandKIRBY/waveFlow/ls.dat’,header=None,sep=’\t’,dtype=str)
16

17 #User input for which wave gauge is to be analyzed
18 waveGaugeNumber = 8

19

20 #Read the data to store the y location of the selected wave gauge
21 location = np.loadtxt( ’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/
22 TINGandKIRBY/waveFlow/undertow/60.1/WG’+str(waveGaugeNumber)+’_alpha.water_k_omega_p.xy’,dtype=str,usecols=[0])
23

24 #Create a new empty dataframe which has y values as columns and add a time column
25 sampledData = pd.DataFrame(columns=[location])
26

27 #Adding the time column in the first location
28 sampledData.insert(0,’Time’,None)
29

30 #Looping through all the time directories
31 for i in timeListing. iloc [:,0]:
32

33 #Set the time value for the sampledData dataframe
34 sampledData.loc[i,’Time’] = i
35

36 #Create a dataLocation variable which changes as the time directory value changes
37 dataLocation = ’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/waveFlow/undertow/’+str(i)+’/’
38

39 #Read the data location file for a specified column only
40 myData = pd.read_csv(str(dataLocation)+’WG’+str(waveGaugeNumber)+’_alpha.water_k_omega_p.xy’,header=None,sep=’\t’,usecols=[1,2])
41

42 lengthOfArray = len(myData)
43

44 #Looping through the 100 data values and storing the values for the given parameter
45 for j in range(lengthOfArray):
46 #Computing the velocity and saving it
47 sampledData.loc[i,location[ j ]] = myData.iloc[j ,1]
48 #Print the current i index
49 print("Time ",i , " done!")
50

51 #Saving the data
52 sampledData.to_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
53 /pythonCodeData/waveFlow/undertow/undertow_k_waveGauge_’+str(waveGaugeNumber)+’.dat’,sep=’\t’)

Listing D.4: Python script used to prepare the data for extraction and compiling of V
1 #!/usr/bin/env python3
2 # −∗− coding: utf−8 −∗−
3 """
4 Created on Tue Jun 18 14:24:42 2019
5
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6 @author: akshay
7 """
8

9 #Importing the required libraries
10 import numpy as np
11 import pandas as pd
12

13 #Read the ls . dat file which contains an ordered list of directory values
14 timeListing = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/waveFlow/ls.dat’,header=None,sep=’\t’,dtype=str)
15

16 #User input for which wave gauge is to be analyzed
17 waveGaugeNumber = 6

18

19 #Read the data to store the y location of the selected wave gauge
20 location = np.loadtxt( ’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/waveFlow/undertow/60.1/WG’+str(waveGaugeNumber)+
21 ’_U.xy’,dtype=str,usecols=[0])
22

23 #Create a new empty dataframe which has y values as columns and add a time column
24 sampledData = pd.DataFrame(columns=[location])
25

26 #Adding the time column in the first location
27 sampledData.insert(0,’Time’,None)
28

29 #Looping through all the time directories
30 for i in timeListing. iloc [:,0]:
31

32 #Set the time value for the sampledData dataframe
33 sampledData.loc[i,’Time’] = i
34

35 #Create a dataLocation variable which changes as the time directory value changes
36 dataLocation = ’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/waveFlow/undertow/’+str(i)+’/’
37

38 #Read the data location file for a specified column only
39 myData = pd.read_csv(str(dataLocation)+’WG’+str(waveGaugeNumber)+’_U.xy’,header=None,sep=’\t’,usecols=[1,2])
40

41 if (waveGaugeNumber == 6):
42 lengthOfArray = 99

43 else :
44 lengthOfArray = 100

45

46 #Looping through the 100 data values and storing the values for the given parameter
47 for j in range(lengthOfArray):
48 #Computing the velocity and saving it
49 sampledData.loc[i,location[ j ]] = myData.iloc[j ,0]
50 #Print the current i index
51 print("Time ",i , " done!")
52

53 #Saving the data
54 sampledData.to_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
55 /pythonCodeData/waveFlow/undertow/undertow_velocity_waveGauge_’
56 +str(waveGaugeNumber)+’.dat’,sep=’\t’)

Listing D.5: Python script used to plot the results over a schematized flume
1 #!/usr/bin/env python3
2 # −∗− coding: utf−8 −∗−
3 """
4 Created on Tue Jun 18 16:30:24 2019
5

6 @author: akshay
7 """
8

9 import numpy as np
10 import matplotlib.pyplot as plt
11 import pandas as pd
12

13

14 #What is to be plotted
15 plotVelocity = 1

16 saveFigure = 1

17

18 #Bounding values for the experimental flume
19 x1 = np.linspace(−5,0,50)
20 y1 = −0.4∗np.ones(50)
21 x2 = np.linspace (0,15.95,125)
22 y2 = np.linspace(−0.4,−0.4+round(15.95/35,3),125)
23

24

25

26

27 #mean water level
28 mean_eta = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/waveFlow/meanSurfaceElevation_
29 waveFlow.txt’,sep=’\t’,header=None)
30 xCoordOld = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/waveFlow/only_top.txt’,sep=’\t’)
31 xCoord = xCoordOld.iloc[0][1:]−0.7
32

33 #Redefine xCoord for Standard deviation plot
34 xSD = xCoord.values
35

36 expMean = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/expData/mean.csv’,sep=’,’)
37

38 #Maximum water level
39 maximum_eta = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
40 /pythonCodeData/waveFlow/maximum.dat’,sep=’\t’,header=None)
41 maximum_eta_SD = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
42 /pythonCodeData/waveFlow/maxSD.dat’,sep=’\t’,header=None)
43 expMax = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
44 /pythonCodeData/expData/max.csv’,sep=’,’)
45

46 #Minimum water level
47 minimum_eta = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
48 /pythonCodeData/waveFlow/minimum.dat’,sep=’\t’,header=None)
49 minimum_eta_SD = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
50 /pythonCodeData/waveFlow/minSD.dat’,sep=’\t’,header=None)
51 expMin = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/expData/min.csv’,sep=’,’)
52

53

54 #Loading the experimental velocity profiles
55 expWg2 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/expData/gauge2U.csv’,sep=’,’,header=None)
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56 expWg3 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/expData/gauge3U.csv’,sep=’,’,header=None)
57 expWg4 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/expData/gauge4U.csv’,sep=’,’,header=None)
58 expWg5 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/expData/gauge5U.csv’,sep=’,’,header=None)
59 expWg6 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/expData/gauge6U.csv’,sep=’,’,header=None)
60 expWg7 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/expData/gauge7U.csv’,sep=’,’,header=None)
61 expWg8 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/expData/gauge8U.csv’,sep=’,’,header=None)
62

63 #Loading experimental k profiles
64 expWg2k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
65 /pythonCodeData/expData/kProfileGauge2.csv’,sep=’,’,header=None)
66 expWg3k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
67 /pythonCodeData/expData/kProfileGauge3.csv’,sep=’,’,header=None)
68 expWg4k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
69 /pythonCodeData/expData/kProfileGauge4.csv’,sep=’,’,header=None)
70 expWg5k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
71 /pythonCodeData/expData/kProfileGauge5.csv’,sep=’,’,header=None)
72 expWg6k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
73 /pythonCodeData/expData/kProfileGauge6.csv’,sep=’,’,header=None)
74 expWg7k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
75 /pythonCodeData/expData/kProfileGauge7.csv’,sep=’,’,header=None)
76 expWg8k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
77 /pythonCodeData/expData/kProfileGauge8.csv’,sep=’,’,header=None)
78

79 #Loading the velocity profiles
80 wg2 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
81 /pythonCodeData/waveFlow/undertow/waveGauge2VelocityData.dat’,sep=’\t’,header=None)
82 wg3 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
83 /pythonCodeData/waveFlow/undertow/waveGauge3VelocityData.dat’,sep=’\t’,header=None)
84 wg4 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
85 /pythonCodeData/waveFlow/undertow/waveGauge4VelocityData.dat’,sep=’\t’,header=None)
86 wg5 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
87 /pythonCodeData/waveFlow/undertow/waveGauge5VelocityData.dat’,sep=’\t’,header=None)
88 wg6 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
89 /pythonCodeData/waveFlow/undertow/waveGauge6VelocityData.dat’,sep=’\t’,header=None)
90 wg7 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
91 /pythonCodeData/waveFlow/undertow/waveGauge7VelocityData.dat’,sep=’\t’,header=None)
92 wg8 = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY
93 /pythonCodeData/waveFlow/undertow/waveGauge8VelocityData.dat’,sep=’\t’,header=None)
94

95 #Loading the k profiles
96 wg2k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/waveFlow/undertow/
97 waveGauge2kData.dat’,sep=’\t’,header=None)
98 wg3k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/waveFlow/undertow/
99 waveGauge3kData.dat’,sep=’\t’,header=None)

100 wg4k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/waveFlow/undertow/
101 waveGauge4kData.dat’,sep=’\t’,header=None)
102 wg5k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/waveFlow/undertow/
103 waveGauge5kData.dat’,sep=’\t’,header=None)
104 wg6k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/waveFlow/undertow/
105 waveGauge6kData.dat’,sep=’\t’,header=None)
106 wg7k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/waveFlow/undertow/
107 waveGauge7kData.dat’,sep=’\t’,header=None)
108 wg8k = pd.read_csv(’/home/akshay/Desktop/Thesis/simulations/dataAnalysis/TINGandKIRBY/pythonCodeData/waveFlow/undertow/
109 waveGauge8kData.dat’,sep=’\t’,header=None)
110

111 #Code for the flume
112 plt . figure( figsize =(15,9))
113 plt .xlim (4.5,10.5)
114 plt .ylim(−0.235,0.16)
115 plt . title ("Ting and Kirby 1994 Comparison with waveFlow",fontsize=20)
116 plt . xlabel("X [m]",fontsize=20)
117 plt .ylabel("Y [m]",fontsize=20)
118 plt .fill_between(x1,−0.45,y1,color=’grey’)
119 plt .fill_between(x2,−0.45,y2,color=’grey’)
120

121 #Code for the mean eta
122 #plt . plot (xCoord[:−10],mean_eta[:−10],’−’, color =’black ’, label =’$\overline{\eta }$ ’)
123 #plt . plot (expMean[’X’],expMean[’Y’],’o ’, markersize=5, color =’green ’)
124

125 #Plotting the SWL
126 plt .axhline(y=0,xmin=−2,xmax=12.5,linewidth=3,linestyle=’−−’,color=’darkgoldenrod’)
127

128 #Plotting the zero velocity line for each wave gauge
129 plt .axvline(−1.265, linestyle=’−.’ , color=’black’ ,alpha=0.4)
130 plt .axvline (5.945, linestyle =’−.’ , color=’black’ ,alpha=0.4)
131 plt .axvline (6.665, linestyle =’−.’ , color=’black’ ,alpha=0.4)
132 plt .axvline (7.275, linestyle =’−.’ , color=’black’ ,alpha=0.4)
133 plt .axvline (7.885, linestyle =’−.’ , color=’black’ ,alpha=0.4)
134 plt .axvline (8.495, linestyle =’−.’ , color=’black’ ,alpha=0.4)
135 plt .axvline (9.11, linestyle =’−.’ , color=’black’ ,alpha=0.4)
136 plt .axvline (9.725, linestyle =’−.’ , color=’black’ ,alpha=0.4)
137

138 #Plotting the max and min profiles
139 plt .plot(xCoord[:−10],maximum_eta[:−10],’−’,color=’black’,label=’waveFlow’)
140 plt .fill_between(xSD[:−10],maximum_eta.iloc[:−10,0]+maximum_eta_SD.iloc[:−10,0],
141 maximum_eta.iloc[:−10,0]−maximum_eta_SD.iloc[:−10,0],alpha=0.5,color=’orange’,label=’1 S.D. Envelope’)
142 #plt . plot (expMax[’X’],expMax[’Y’],’o ’, color =’green ’, markersize=5)
143

144 #plt . plot (xCoord[:−10],minimum_eta[:−10],’−’,color=’black ’)
145 #plt . fill_between (xSD[:−10],minimum_eta.iloc[:−10,0]+minimum_eta_SD.iloc[:−10,0],minimum_eta.iloc[:−10,0]−minimum_eta_SD.iloc[:−10,0],alpha=0.5,color=’orange’)
146 plt .plot(expMin[’X’],expMin[’Y’],’o’,color=’crimson’,markersize=7,label=r’TK94 ($\langle \eta_{max} \rangle$)’)
147

148

149

150 #Plotting the velocity
151 if plotVelocity == 1:
152 #Wave Gauge 2
153 plt .plot(wg2[1][:np.where(wg2[0] > 0.5)[0][0]]+5.945,wg2[0][:np.where(wg2[0] > 0.5)[0][0]]∗0.23,color=’red’ , label=’waveFlow (undertow)’)
154 plt .plot(expWg2[0]+5.945,expWg2[1]∗0.23,’∗’,color=’blue’,label=’TK94 (undertow)’)
155

156 #Wave Gauge 3
157 plt .plot(wg3[1][:np.where(wg3[0] > 0.5)[0][0]]+6.665,wg3[0][:np.where(wg3[0] > 0.5)[0][0]]∗0.2095,color=’red’)
158 plt .plot(expWg3[0]+6.665,expWg3[1]∗0.2095,’∗’,color=’blue’)
159

160 #Wave Gauge 4
161 plt .plot(wg4[1][:np.where(wg4[0] > 0.45)[0][0]]+7.275,wg4[0][:np.where(wg4[0] > 0.45)[0][0]]∗0.1921,color=’red’)
162 plt .plot(expWg4[0]+7.275,expWg4[1]∗0.1921,’∗’,color=’blue’)
163

164 #Wave Gauge 5
165 plt .plot(wg5[1][:np.where(wg5[0] > 0.4)[0][0]]+7.885,wg5[0][:np.where(wg5[0] > 0.4)[0][0]]∗0.1747,color=’red’)
166 plt .plot(expWg5[0]+7.885,expWg5[1]∗0.1747,’∗’,color=’blue’)
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167

168 #Wave Gauge 6
169 plt .plot(wg6[1][:np.where(wg6[0] > 0.35)[0][0]]+8.495,wg6[0][:np.where(wg6[0] > 0.35)[0][0]]∗0.1573,color=’red’)
170 plt .plot(expWg6[0]+8.495,expWg6[1]∗0.1573,’∗’,color=’blue’)
171

172 #Wave Gauge 7
173 plt .plot(wg7[1][:np.where(wg7[0] > 0.33)[0][0]]+9.11,wg7[0][:np.where(wg7[0] > 0.33)[0][0]]∗0.1397,color=’red’)
174 plt .plot(expWg7[0]+9.11,expWg7[1]∗0.1397,’∗’,color=’blue’)
175

176 #Wave Gauge 8
177 plt .plot(wg8[1][:np.where(wg8[0] > 0.33)[0][0]]+9.725,wg8[0][:np.where(wg8[0] > 0.33)[0][0]]∗0.1221,color=’red’)
178 plt .plot(expWg8[0]+9.725,expWg8[1]∗0.1221,’∗’,color=’blue’)
179

180 else :
181 #Plotting the k values
182 plt .plot(wg2k[1][1:np.where(wg2k[0] > 0)[0][0]]+5.945,wg2k[0][1:np.where(wg2k[0] > 0)[0][0]]∗0.23,color=’red’,label=’waveFlow (TKE)’)
183 plt .plot(expWg2k[0]+5.945,expWg2k[1]∗0.23,’∗’,color=’blue’,label=r’TK94 ($\langle k \rangle$)’)
184

185 #Wave Gauge 3
186 plt .plot(wg3k[1][1:np.where(wg3k[0] > 0)[0][0]]+6.665,wg3k[0][1:np.where(wg3k[0] > 0)[0][0]]∗0.2095,color=’red’)
187 plt .plot(expWg3k[0]+6.665,expWg3k[1]∗0.2095,’∗’,color=’blue’)
188

189 #Wave Gauge 4
190 plt .plot(wg4k[1][1:np.where(wg4k[0] > 0)[0][0]]+7.275,wg4k[0][1:np.where(wg4k[0] > 0)[0][0]]∗0.1921,color=’red’)
191 plt .plot(expWg4k[0]+7.275,expWg4k[1]∗0.1921,’∗’,color=’blue’)
192

193 #Wave Gauge 5
194 plt .plot(wg5k[1][1:np.where(wg5k[0] > 0)[0][0]]+7.885,wg5k[0][1:np.where(wg5k[0] > 0)[0][0]]∗0.1747,color=’red’)
195 plt .plot(expWg5k[0]+7.885,expWg5k[1]∗0.1747,’∗’,color=’blue’)
196

197 #Wave Gauge 6
198 plt .plot(wg6k[1][1:np.where(wg6k[0] > 0)[0][0]]+8.495,wg6k[0][1:np.where(wg6k[0] > 0)[0][0]]∗0.1573,color=’red’)
199 plt .plot(expWg6k[0]+8.495,expWg6k[1]∗0.1573,’∗’,color=’blue’)
200

201 #Wave Gauge 7
202 plt .plot(wg7k[1][1:np.where(wg7k[0] > 0)[0][0]]+9.11,wg7k[0][1:np.where(wg7k[0] > 0)[0][0]]∗0.1397,color=’red’)
203 plt .plot(expWg7k[0]+9.11,expWg7k[1]∗0.1397,’∗’,color=’blue’)
204

205 #Wave Gauge 8
206 plt .plot(wg8k[1][1:np.where(wg8k[0] > 0)[0][0]]+9.725,wg8k[0][1:np.where(wg8k[0] > 0)[0][0]]∗0.1221,color=’red’)
207 plt .plot(expWg8k[0]+9.725,expWg8k[1]∗0.1221,’∗’,color=’blue’)
208

209 plt .grid()
210 plt . xticks ( fontsize=15)
211 plt . yticks( fontsize=15)
212

213 #Adding the breaking point line
214 plt .axvline (6.4, linestyle =’−−’,color=’darkmagenta’,label=’Breaking Point’,linewidth=3)
215

216 #Adding text in the plot
217 plt . text (5,0.001, ’MSL’,fontsize=15)
218

219 plt . legend(fontsize=13,loc=’upper left ’ )
220 #Save the figure
221 if saveFigure == 1:
222 if plotVelocity == 1:
223 plt . savefig( ’flumeplotVelocity.png’,dpi=450)
224 else :
225 plt . savefig( ’flumeplotK.png’,dpi=450)
226 plt .show()

Listing D.6: Python script used to plot the spectral results in a 3D plot
1 #!/usr/bin/env python3
2 # −∗− coding: utf−8 −∗−
3 """
4 Created on Sat Jul 27 22:42:00 2019
5

6 @author: akshay
7 """
8 #Importing the required libraries
9 from mpl_toolkits.mplot3d import Axes3D

10 from matplotlib.collections import PolyCollection
11 import matplotlib.pyplot as plt
12 from matplotlib import colors as mcolors
13 import numpy as np
14 import pandas as pd
15 import scipy.signal #importing scipy . signal package for detrending
16 from scipy.fftpack import fft #importing Fourier transform package
17 from scipy.stats import chi2 #importing confidence interval package
18

19 #######################################################################################################################
20 #Function definition for the spectrum analysis (This code is taken from the course work by
21 Prof. Ad Reniers and Prof. Marion Tissier for the course work Ocean Waves at TU Delft)
22

23 def wave_spectrum(data,nfft,Fs):
24 ’’’ Compute variance spectral density spectrum of the time−series and its
25 90% confidence intervals .
26 The time−series is first divided into blocks of length nfft before being
27 Fourier−transformed.
28

29 INPUT
30 data timeseries
31 nfft block length
32 Fs sampling frequency (Hz)
33

34 OUTPUT
35 E variance spectral density . If data is in meters , E is in m^2/Hz
36 f frequency axis (Hz)
37 confLow and confUpper Lower and upper 90% confidence interval ;
38 ( Multiplication factors for E) ’’’
39

40 # 1. PRELIMINARY CALCULATIONS
41 # −−−−−−−−−−−−−−−−−−−−−−−−−−−
42 n = len(data) # length of the time−series
43 nfft = int( nfft − (nfft%2)) # the length of the window should be an even number
44

45 data = scipy.signal .detrend(data) # detrend the time−series
46 nBlocks = int(n/nfft) # number of blocks (use of int to make it an integer )
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47

48 data_new = data[0:nBlocks∗nfft] # (we work only with the blocks which are complete)
49

50 # we organize the initial time−series into blocks of length nfft
51 dataBlock = np.reshape(data_new,(nBlocks,nfft)) # each column of dataBlock is one block
52

53 # 2. CALCULATION VARIANCE DENSITY SPECTRUM
54 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55

56 # definition frequency axis
57 df = Fs/nfft # frequency resolution of the spectrum df = 1/[Duration of one block ]
58 f = np.arange(0,Fs/2+df,df) # frequency axis (Fs/2 = Fnyquist = max frequency)
59 fId = np.arange(0,len(f ))
60

61 # Calculate the variance for each block and for each frequency
62 fft_data = fft (dataBlock,n = nfft , axis = 1) # Fourier transform of the data
63 fft_data = fft_data [:, fId] # Only one side needed
64 A = 2.0/nfft∗np.real(fft_data) # A(i ,b) and B(i ,b) contain the Fourier coefficients Ai and Bi for block b
65 B = 2.0/nfft∗np.imag(fft_data) # −− see LH’s book, page 325 for definition of Ai and Bi
66 # /!\ assumes that mean(eta)=0
67

68 E = (A∗∗2 + B∗∗2)/2 # E(i ,b) = ai^2/2 = variance at frequency fi for block b.
69

70 # We finally average the variance over the blocks , and divide by df to get the variance DENSITY spectrum
71 E = np.mean(E, axis = 0)/df
72

73 # 3. CONFIDENCE INTERVALS
74 # −−−−−−−−−−−−−−−−−−−−−−−
75 edf = round(nBlocks∗2) # Degrees of freedom
76 alpha = 0.1 # calculation of the 90% confidence interval
77

78 confLow = edf/chi2.ppf(1−alpha/2,edf) # see explanations on confidence intervals given in lecture 3
79 confUpper = edf/chi2.ppf(alpha/2,edf)
80

81 return E,f ,confLow,confUpper
82

83 #######################################################################################################################
84

85 #Loading individual databases
86 #Importing the data
87 #data = pd.read_csv (’ waveFlow/waveGauges.dat’,sep=’\s+’,skiprows=4,header=None)
88

89 #Importing the experimental data
90 expData = pd.read_csv(’../expData/Rav5A.awg’,sep=’\s+’,skiprows=1,header=None)
91 expTime = np.linspace(0,len(expData)∗0.02,len(expData),endpoint=True)
92

93 #Importing OpenFOAM data
94 #foamData = pd.read_csv (’ waveFlow/postProcessing/surfaceElevationAnyName/0/ surfaceElevation . dat ’, sep=’\s+’,skiprows=4,header=None)
95

96 #Define the shift parameters
97 #timeDisp = [−0.1288,−1.99195,−0.47595,−0.371,0,0,0,1.341,0]
98 #move = [−0.0013,−0.0003,−0.0006,−0.0007,0,0,0,−0.002,0]
99

100

101 #Define the surface plot for the flume
102 flumeY = np.linspace(0,46,200)
103 flumeZ = np.zeros(200)
104

105 #Index and assign Y coordinate for the flume
106 flumeZ[:48] = 0 # First 11 meters is y=0
107 flumeZ[48:71] = np.linspace (0,0.62,23, endpoint=True) #The next 5 meters linearly increase
108 flumeZ[71:] = np.linspace (0.62,0.95,129, endpoint=True) #The rest of the domain linearly increases
109

110

111

112 #Index and assign the values
113

114

115

116 #EndTime definition
117 endTime = 110

118

119 #Define cut−off frequency
120 cutOffFrequency = 1.5
121

122

123

124

125 #Computing the spectrum for the given wave paddle series
126 WG1 = wave_spectrum(expData[1],len(expData[1])∗0.01,50) #Absolute Location 3.415 m
127 WG7 = wave_spectrum(expData[6],len(expData[6])∗0.01,50) #Absolute Location 14.84 m
128 WG26 = wave_spectrum(expData[9],len(expData[9])∗0.01,50) #Absolute Location 45.79 m
129 WG27 = wave_spectrum(expData[10],len(expData[10])∗0.01,50) #Absolute Location 45.96 m
130

131 #Specify the X axis and slice it up until when the cut−off frequency is 1.5
132 xs1 = WG1[1][:np.where(WG1[1] > cutOffFrequency)[0][0]]
133 xs7 = WG7[1][:np.where(WG7[1] > cutOffFrequency)[0][0]]
134 xs26 = WG26[1][:np.where(WG26[1] > cutOffFrequency)[0][0]]
135 xs27 = WG27[1][:np.where(WG27[1] > cutOffFrequency)[0][0]]
136

137 #Specify the Y axis
138 ys1 = (WG1[0][:np.where(WG1[1] > cutOffFrequency)[0][0]])/max(WG1[0])
139 ys7 = (WG7[0][:np.where(WG7[1] > cutOffFrequency)[0][0]])/max(WG7[0])
140 ys26 = (WG26[0][:np.where(WG26[1] > cutOffFrequency)[0][0]])/max(WG26[0])
141 ys27 = (WG27[0][:np.where(WG27[1] > cutOffFrequency)[0][0]])/max(WG27[0])
142

143 #Starting and ending points set to zero for plot consistency
144 ys1 [0], ys1[−1] = 0,0
145 ys7 [0], ys7[−1] = 0,0
146 ys26 [0], ys26[−1] = 0,0
147 ys27 [0], ys27[−1] = 0,0
148

149 #Specify the Z axis
150 zs = [3.415, 14.84, 42.79, 45.96] #Location of the wave gauges
151

152 #Create and empty sotrage for verts
153 verts = []
154

155

156 #Define what verts are
157 verts .append(list(zip(xs1,ys1 )))
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158 verts .append(list(zip(xs7,ys7 )))
159 verts .append(list(zip(xs26,ys26)))
160 verts .append(list(zip(xs27,ys27)))
161

162 #Define how to assign the colors
163 def cc(arg):
164 return mcolors.to_rgba(arg, alpha=0.6)
165

166

167 ##Setting the figure definition
168 # fig = plt . figure ( figsize =(20,15))
169 #ax = fig .gca( projection =’3d’)
170

171

172

173 fig = plt . figure( figsize =(20,15))
174 ax = fig .gca(projection=’3d’)
175 #Plotting the 3D spectrum plots
176 poly = PolyCollection(verts, facecolors=[cc( ’ r ’ ), cc( ’g’ ), cc( ’b’ ), cc( ’ olive ’ )], edgecolor=’black’)
177 ax.add_collection3d(poly, zs=zs, zdir=’y’)
178 ax.plot(flumeY,flumeZ,zs=1.5,zdir=’x’,color=’black’,linewidth=2)
179

180 #for i in np. linspace (0,360,361):
181 ax.view_init(elev=10,azim=125)
182

183 #Formatting
184 ax.set_xlabel (r ’Frequency [$Hz$]’,fontsize=15,labelpad=15)
185 ax.set_xlim3d(0, 1.5)
186 ax.set_ylabel (r ’Flume Location [m]’,fontsize=15,labelpad=15)
187 ax.set_ylim3d(0, 46)
188 ax.set_zlabel (r ’Normalized Variance Density [$−$]’,fontsize=15,labelpad=15)
189 ax.set_zlim3d(0, 1)
190 #plt . savefig (’ Results /animation/spectrum/spectrum_frame.png’,dpi=300)
191 #print ( i )

Listing D.7: Python script used to carryout the zero crossing analysis
1 #!/usr/bin/env python3
2 # −∗− coding: utf−8 −∗−
3 """
4 Created on Wed Aug 7 00:08:01 2019
5

6 @author: akshay
7 """
8 import numpy as np
9

10 #Coding the definition to detect the zero crossing
11 def zeroCrossing(data,gauge):
12 ’’’ This function detects the zero crossing by saving the indices where the zero value is reached
13

14 data : is the data stream which needs to be analyzed
15 gauge: is the gauge number within the data file
16

17 RETURNS:
18 this function returns a list of all the indices where zero crossing occurs
19 ’’’
20 #Empty list for array indices
21 ones = []
22

23 #Loop through the dataset and locate where there is a zero crossing
24 for i in range(0,len(data. iloc [:, gauge])−1):
25 #Check using the zero−up crossing
26 if (data. iloc [ i ,gauge] <= 0) and (data.iloc[ i+1,gauge] > 0):
27 ones.append(i)
28

29 return ones
30

31

32 def minMaxAnalysis(givenData,resultsArray,gauge):
33 ’’’
34 This function computes the minimum and maximum by windowning the given time series based on zero up crossing
35

36 INPUT:
37

38 givenData = Original dataset
39 resultsArray = Result obtained from the zeroCrossing function
40 gauge = Gauge number in givenData
41

42 OUTPUT:
43

44 The function return the following data
45

46 Data Slicing Index
47 maxWaveHeight − 0
48 minWaveHeight − 1
49 maxIndex − 2
50 minIndex − 3
51 ’’’
52 #Compute and store the minimum and maximum values
53 maxWaveHeight = []
54 minWaveHeight = []
55 maxIndex = []
56 minIndex = []
57

58 #Loop through the indices and compute the max and minimum indices
59 for i in range(0,len(resultsArray)−1):
60 #Computing the max within the given window
61 maxWaveHeight.append(max(givenData.iloc[resultsArray[i]:resultsArray[i+1],gauge]))
62

63 #Storing the location where this max exists within this window
64 maxIndex.append(resultsArray[i] + np.where(max(givenData.iloc[resultsArray[i]:resultsArray[i+1],gauge]) == givenData.iloc[resultsArray[i]:resultsArray[i+1],gauge])[0][0])
65

66 minWaveHeight.append(min(givenData.iloc[resultsArray[i]:resultsArray[i+1],gauge]))
67

68 #Storing the location where this max exists within this window
69 minIndex.append(resultsArray[i] + np.where(min(givenData.iloc[resultsArray[i]:resultsArray[i+1],gauge]) == givenData.iloc[resultsArray[i]:resultsArray[i+1],gauge])[0][0])
70

71 return maxWaveHeight, minWaveHeight, maxIndex, minIndex
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