

Ravi Peters Hugo Ledoux Jantien Stoter

Overview

- I. Achievements
- 2. Current work
- 3. Future work

Achievements

MAT approximation

Shrinking ball algorithm (Ma et al., 2012)

https://vimeo.com/84859998

Even for noisy points, 'good' ball is computed

https://vimeo.com/127577620

(Re)written software

- I. Own 3D visualiser
- 2. Efficient C++ implementation main algorithm (~250.000 points/s with 16-cores)

https://github.com/tudelft3d/masbcpp

Scalability

- of computation
 (multiple cpu cores)
- in size of dataset (using tiling)

Marco Lam (MSc student)

Simplification of LiDAR point clouds:

Reduce number of points while maintaining detail.

E.g. for creation 3DTOP10NL

New focus: visualisation

Splatting

- Current work

First use cases

- I. Detect `watergangen`
- 2. Detect (features of) buildings e.g. `daklijnen`

Watergangen

Use MAT to obtain 2D lines of watergang parameters

Watergangen

MAT points (AHN2)

as registered by Waterschap

Daklijnen

Future work

Building volume estimation

By union of medial balls

And more...

- I. denoising point cloud
- 2. improve quality of normals in point cloud
- 3. object classification
- 4. ...

