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Dakowicz & Gold (2003)

We have restricted ourselves to an evaluation of several weighted-average
methods, as there are a variety of techniques in common that can be compared. All of
the methods were programmed by ourselves – which left out the very popular Kriging
approach, as too complicated, and not necessarily better. Nevertheless, many aspects
of this study apply to this method as well, since it is a weighted-average method with
the same problems of neighbour selection, etc., as the methods we attempted

In general, we may ask about three components of a weighted-average
interpolation method. Firstly: what is the weighting process used? Secondly: what is
the set of neighbours used to obtain the average? Thirdly: what is the elevation
function being averaged? (Often it is the data point elevation alone, but sometimes it
is a plane through the data point incorporating slope information as well.)

One simple weighted-average model is the triangulation, using the Delaunay
triangulation. Fig. 5 shows the result, including the crust and skeleton draped over the
terrain. The flat triangles are readily seen.. Fig. 6 shows the improved model when
estimated skeleton points are added, and all flat triangles are removed.

Fig. 5. Interpolation from Delaunay triangulation - a) perspective view; b) vertical view

Fig. 6. Adding skeleton points to Fig. 5 - a) perspective view; b) vertical view
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Chapter 4 Generalization of a DTM surface through skeleton retraction of 2D slices 69

of a ridge is a leaf of the skeleton. The set of leaves defines a three dimensional feature -

ridge (Figure 4.9).

Ridge

Figure 4.9: Perspective views of an example DTM showing a ridge.

Construction of a vertical parent-child hierarchy between leaf skeleton branches can be

performed similarly to the construction of a hill. The skeleton leaves if they lie close to

each other in the vertical projection to the XY plane form a vertical path topologically

related to the ridge line.
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Figure 4.10: Construction of the parent child relationship for contour lines representing a ridge:
source contour lines with their skeletons (a), two ridge lines (b) and the vertical paths
defining skeleton relationships for the ridges (c).

An example of such a hierarchy is presented in Figure 4.10. A single hill from the model

is considered here. The hill contains two major ridge lines marked in blue in Figure 4.10

(b). At the same time, for the contour lines a vertical hierarchy can be constructed forming

the sequence ABCDEFG. As can be seen in the figure the skeletons of the contour lines

are composed of one polyline. Assuming that there exists a ”root” point on the skeleton,

two branches are created. The two branches are leaves of the skeleton and together with

leaves from other skeletons form two vertical hierarchies. Each of the two hierarchies is

related to one of the ridge lines. The sequence A1 . . .G1 (Figure 4.10 (c)) exists owing to



Tam & Heidrich (2003)

(a) Max Planck model� (b) Medial axis of Planck model�

(c) Simplified MA of �
Planck model�

(d) Simplified MA of Planck model�
(left ear removed)�

(e) Simplified Planck model�
(left ear removed)�

(i) Simplified hip bone

(f) Hip bone model

(g) Hip bone medial axis

(h) Hip bone simplified axis

Figure 12: Results of applying our simplification algorithm to the Max Planck and hip bone models
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Ma, Won Bea & Choi (2012)
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Fig. 9 Color-coded surface
variation (SV) and LFS for
varying values of k. Red
corresponds to high surface
variation values (or low LFS
values) and blue to low values
(or high values, respectively)

Fig. 10 Point decimation results of Lucy for various values of ϵ. Features like the torch, wrinkles of her skirt, and wings are preserved while the
sample size is reduced by more than ten times

over, in some applications such as shape decomposition and
object recognition, a simplified medial axis where only sig-
nificant and stable part of the medial axis is preserved can
be more useful [9, 33, 39].

We use a heuristic similar to that of [2] for detecting such
‘less contributing’ balls Bp = B(cp,ρp). The first criterion
is whether Bp can be completely covered by slightly enlarg-
ing the neighboring balls that correspond to the k nearest
samples from p. We can remove redundant balls by this cri-
terion. The second criterion is the angle between the vectors
from the sample p to two equidistant sample points from
cp . If the angle is small, the medial axis is known to be un-
stable [4]. Thus, we discard Bp if either of the following is
satisfied:

1. ∃Bq = B(cq,ρq), cq ∈ Mp(k) such that Bp ⊂ B(cq, (1 +
ξ)ρq).

2. For two equidistant sample points p and p̃ from cp ,
∠pcpp̃ ≤ ω.

ξ and ω are user-defined parameters. Figures 7 and 8 show
the comparison between the original and simplified results
for ξ = 0.1 and ω = π/20, with the difference between them

color coded. While some detailed features are lost, the sub-
set of approximate medial balls still approximates the object
quite well using only 10∼30% of the storage compared to
the original results.

7.3 LFS estimation

The local feature size LFS(x) of a point x ∈ S is the distance
from x to the closest medial axis point. If V is sufficiently
dense, the approximate medial axis points M obtained by
our algorithm can be viewed as a set of points sampled on
the medial axis of S. Thus, when M is sufficiently dense, we
can approximate LFS(p) as the distance from p ∈ V to the
closest point in M , which can easily be done by constructing
the kd-tree for M and performing the NN query for each
p ∈ V .

To approximate the LFS, however, M alone is not suf-
ficient because it approximates only the ‘inner’ part of the
medial axis. We need additional points to approximate the
outer part of the medial axis. To obtain them, for each p ∈ V ,
we perform the medial point approximation algorithm twice,
one for np and the other for −np .

16 J. Ma et al.

Fig. 9 Color-coded surface
variation (SV) and LFS for
varying values of k. Red
corresponds to high surface
variation values (or low LFS
values) and blue to low values
(or high values, respectively)

Fig. 10 Point decimation results of Lucy for various values of ϵ. Features like the torch, wrinkles of her skirt, and wings are preserved while the
sample size is reduced by more than ten times

over, in some applications such as shape decomposition and
object recognition, a simplified medial axis where only sig-
nificant and stable part of the medial axis is preserved can
be more useful [9, 33, 39].

We use a heuristic similar to that of [2] for detecting such
‘less contributing’ balls Bp = B(cp,ρp). The first criterion
is whether Bp can be completely covered by slightly enlarg-
ing the neighboring balls that correspond to the k nearest
samples from p. We can remove redundant balls by this cri-
terion. The second criterion is the angle between the vectors
from the sample p to two equidistant sample points from
cp . If the angle is small, the medial axis is known to be un-
stable [4]. Thus, we discard Bp if either of the following is
satisfied:

1. ∃Bq = B(cq,ρq), cq ∈ Mp(k) such that Bp ⊂ B(cq, (1 +
ξ)ρq).

2. For two equidistant sample points p and p̃ from cp ,
∠pcpp̃ ≤ ω.

ξ and ω are user-defined parameters. Figures 7 and 8 show
the comparison between the original and simplified results
for ξ = 0.1 and ω = π/20, with the difference between them

color coded. While some detailed features are lost, the sub-
set of approximate medial balls still approximates the object
quite well using only 10∼30% of the storage compared to
the original results.

7.3 LFS estimation

The local feature size LFS(x) of a point x ∈ S is the distance
from x to the closest medial axis point. If V is sufficiently
dense, the approximate medial axis points M obtained by
our algorithm can be viewed as a set of points sampled on
the medial axis of S. Thus, when M is sufficiently dense, we
can approximate LFS(p) as the distance from p ∈ V to the
closest point in M , which can easily be done by constructing
the kd-tree for M and performing the NN query for each
p ∈ V .

To approximate the LFS, however, M alone is not suf-
ficient because it approximates only the ‘inner’ part of the
medial axis. We need additional points to approximate the
outer part of the medial axis. To obtain them, for each p ∈ V ,
we perform the medial point approximation algorithm twice,
one for np and the other for −np .



Can the MAT-concept be applied to 
analyse and generalise DSMs in a practical 
manner that improves on current method?



Can the MAT-concept be applied to  
analyse and generalise DSMs in a practical 
manner that improves on current method?

identify features, or sub-features



Can the MAT-concept be applied to 
analyse and generalise DSMs in a practical 
manner that improves on current method?

1. reduce # of points 
2. remove a (sub-)feature 
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